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An evaluation of Bristow’s method for the detection

of subsurface cavities

Tony Lowry* and Peter N. Shive*

ABSTRACT

The Bristow method, an electrical resistivity tech-
nique employing a pole-dipole measurement array in
conjunction with a simple graphical method of inter-
pretation, has proven an effective means of locating
subsurface cavities. There have been questions, how-
ever, regarding the limits of the method and whether
the Bristow method is indeed the most suitable of the
various electrical resistivity techniques for cavity de-
tection. In hopes of resolving some of the controversy
surrounding Bristow’s method, resistivity traverses
are numerically modeled over spherical and cylindrical
cavities given a variety of circumstances. Using a
slight variation of Bristow’s original interpretive tech-
nique on modeled data, the size and location of sub-
surface cavities can be determined with surprising
accuracy. However, when the simulation is altered to

incorporate geologic noise, the maximum depth at
which a cavity can be detected is found to be far less
than has been reported in field investigations. In this
instance the presence of a cylindrical cavity cannot be
discerned beyond a depth to the top approximately
equal to the diameter of the cavity, and spherical
cavities are indistinguishable at depths much greater
than the radius. One should note that the noise field
generated for this model may not be representative of
what would normally be found in the real earth. In the
field, the maximum achievable depth of detection will
vary depending on the actual geologic conditions and
whether some technique is employed to reduce the
effects of noise. In any case, a comparison of traverses
using various electrode arrays confirms that the Bris-
tow method is the most satisfactory of the applicable
electrical resistivity techniques.

INTRODUCTION

The presence of solution features or abandoned mine
tunnels beneath a highway, dam, or building can pose a
serious threat to the stability of the structure. Investigators
have experimented with all manner of geophysical tech-
niques in the search for an inexpensive, reliable means of
locating cavities before construction begins, thus permitting
the builder to avoid those problems associated with the
subsidence or collapse of a structural foundation.

Of the various methods which have been applied success-
fully to detect subsurface cavities, a technique designed by
C. M. Bristow (1966) has attracted a great deal of attention.
This technique, commonly referred to as the Bristow
method, consists of an electrical resistivity approach using a
pole-dipole array similar to that popularized by Logn (1954)
in conjunction with a simple graphical technique used to
interpret the resulting data. Using this method in field studies
over karst terrains, Bristow was able to describe the approx-

imate position of several known passages. More impres-
sively, he discovered two cavities and verified their exist-
ence through drilling and excavation.

A few years after its introduction, Bates (1973) used
Bristow’s method to delineate a number of known cavities.
After making some slight modifications, he was also able to
locate a relatively small target cavity as well as several
anomalous regions which did not correspond with any
known cavities. Regrettably, no attempt was made to con-
firm whether the latter were indeed caves.

Several field examinations of the Bristow method, exhib-
iting varying degrees of success, have since been conducted.
In the course of their respective explorations of sites of
known subsidence, Fountain et al. (1975) were able to detect
both air-filled and mud-filled cavities and Smith (1986) lo-
cated a solution-filled cavity, all of which were confirmed by
drilling. Cooper and Bieganousky (1978) and Ballard (1982)
achieved results which are perhaps best regarded as incon-
clusive. Butler and Murphy (1980) were decidedly unsuc-
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cessful in their attempts to locate several artificially em-
placed target cavities, but that particular failure might be
ascribed to aggravation of the geologic noise as a result of
the excavation of the site.

Kirk and Werner (1981), based on their own experiences
and published accounts of other investigations, claim a
success rate for the method of just over 50 percent. The
method of intersecting arcs used to interpret the data,
however, has drawn criticism from some researchers (My-
ers, 1975; Creedy, 1975), who argue that it is based on faulty
assumptions and that many of the positive results reported
using Bristow’s method may well be serendipitous.

Discussions probing the capabilities of the Bristow
method have focused largely on field investigations in which
measurement errors and the complexity of geologic condi-
tions can obscure desired information or even lead to false
conclusions. One exception is Spiegel et al. (1980), who
detail a numerical technique for modeling arbitrary 3-D
anomalous bodies underlying an irregular surface terrain.
Owen (1983) also refers to model results in his survey of
current methods for detection of tunnels and caves.

In this paper, numerical methods are used to model
electrical resistivity surveys over spherical and cylindrical
subsurface cavities. Bristow’s interpretive method is applied
to the resulting data, permitting a test of the approach with
conditions such as the size and placement of the cavity and
the nature of the surrounding material carefully controlled.
The resolution of the pole-dipole array is compared to that of
other electrode arrays. The maximum depth at which one
can reasonably expect to detect a cavity is considered, and
the consequences of varying the potential-electrode spacing
are explored as well. Based on the results of these models,
we suggest how to use Bristow’s method most effectively to
delineate localized inhomogeneities.

THE BRISTOW METHOD

The resistivity technique is one of several electrical pros-
pecting methods for mapping the geoelectric structure of the
earth’s subsurface. An electric current is injected into the
ground via two electrodes (the current electrodes), inducing
an electrical potential field in the surrounding earth. The
earth’s response is measured as a potential drop or voltage
across another pair of electrodes, referred to as the potential
electrodes. This measurement is then expressed as an appar-
ent resistivity—in essence, the resistivity indicated by the
measured voltage given the relative positions of the elec-
trodes and assuming the ground has invariant electrical
properties throughout. The apparent resistivity at the point
midway between the potential electrodes, denoted p,, is

given by
22aVy/ 1 000 0
ry rp r3 rg

in which V is the voltage, I is the current, and the distances
r are as shown in Figure 1. Of course, the resistivity is not
normally homogeneous in a geologic setting; so if one or
more of the electrodes is moved, a different apparent resis-
tivity should be indicated, reflecting in some manner the
variation in electrical conductivity of the earth.

A number of electrode arrangements are commonly used

for resistivity surveying, each with its own strengths and
weaknesses. The Bristow method employs a pole-dipole
electrode array, in which a monopolar current source is
approximated by moving the current sink electrode an
effectively infinite distance from its counterpart—in prac-
tice, anywhere from five to ten times the distance to be
surveyed. Voltage readings are taken at progressively
greater distances from the stationary current source along a
linear traverse. Because the effects of the current sink
electrode are minimized, the apparent resistivity calculation
for this array becomes s

27V rr
Pa = . (2)
1 ry—r

Generally, a resistivity array is intended to function in one
of two capacities. Profiling techniques describe lateral vari-
ations in resistivity by maintaining a constant electrode
spacing while incrementally advancing the electrode array
across the area of interest. Sounding is accomplished by
centering the array at a single location and gradually increas-
ing the distance between electrodes in order to reflect
changes in resistivity with greater depth. The pole-dipole
array as employed by Bristow (1966) does not fit neatly into
either category; rather, the technique was designed to trace
variations in resistivity with increasing radial distance from
the source electrode. Bristow (1966) drew upon this concep-
tualization in developing his method of intersecting arcs for
interpretation of the resistivity data. Reasoning that, in an
otherwise homogeneous medium, the source of an apparent
resistivity high or low should lie along a circular arc incor-
porating the anomaly and centered about the current source,
the intuitive claim was made that for two or more traverses
across a given region the source of the respective anomalies
should occur at the intersection of the circular arcs extend-
ing from them. The resulting interpretive construction is
illustrated in Figure 2. Note, however, that the visualization
of the apparent resistivity curve as a reflection of how the
earth’s resistivity behaves with increasing radial distance
from the current source is only an approximation.

THE MODELING PROCEDURE

The results cited below were modeled using a 3-D inte-
grated finite-difference numerical scheme similar to that
introduced by Dey and Morrison (1979) but made slightly
more accurate by incorporating singularity removal. Briefly,
a desired distribution of geoelectrical properties is approxi-
mated as a finite half-space made up of parallelepiped
blocks, with each block being assigned its own discrete
resistivity value. The partial differential equation which
governs the resistivity problem is given by

V : [o®)Vodx)] = — Id(x — x,),

in which o is the conductivity (the inverse of the resistivity
and a function of spatial position), ¢ is electrical potential
(likewise a function of position), I is the injected current, & is
the delta function, and x; is the spatial position of the current
source. This equation is discretized and a surface integral is
taken about each nodal point, after which a first-order
forward finite-difference approximation is substituted for
each partial derivative term. The resulting series of linear
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equations is solved algebraically for the potential ¢ at each
of the nodal points. Those wishing a more complete expla-
nation of the mathematical procedure, including a discussion
of singularity removal, are referred to Lowry et al. (1989).

In the course of developing the numerical scheme, the
various sources of error were analyzed extensively in order
to maximize the accuracy of the technique. Only a very
small fraction of the error was due to computational or
machine inaccuracy, a somewhat larger portion was numer-
ical error resulting from the discretization of the problem,
and perhaps most of the error derived from other sources
such as the approximation of boundary conditions on the
partial differential equation.

The problem posed herein, i.e., the simulation of a spher-
ical or cylindrical cavity in a medium, involves two addi-
tional sources of error. First, a sphere or cylinder cannot be
modeled exactly using cubic blocks. For our purposes, a grid
mesh of one-tenth the diameter of the object was used.
Convergence plots employing decreasing mesh sizes suggest
that the improvement which results from using a smaller
mesh is relatively slight. However, the computational time

I'2 r I

N

+ -

\

/

7 ©

FiG. 1. An arbitrary dc resistivity electrode array.
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Fic. 2. The method of intersecting arcs used to locate
cavities.

necessary to complete a solution increases rapidly as the
number of nodes is increased. The second source of error
arises because those blocks having centers which fall within
the radius of the sphere or cylinder are assigned ‘‘very
large’” but not infinite resistivity values. The latter is the
larger contributor to the total error, but it cannot be avoided
within the strictures of the finite-difference modeling scheme
used. Even so, the error in the model is acceptably small.
When compared to analytically derived solutions, average
errors along a resistivity traverse are typically less than
1 percent. A more rigorous examination of the error analysis
performed on the numerical method is detailed in Lowry et
al. (1989).

RESULTS

In hopes of achieving a qualitative feel for some of the
capabilities and limitations of the Bristow method, pole-
dipole traverses are modeled over simulated cavities given a
variety of circumstances. In each case, a cavity of 1.0 m
radius is emplaced within a half-space having a resistivity
(or, for those simulations incorporating randomly induced
statistical noise, a mean resistivity) of 100 ohm-m, a resis-
tivity magnitude appropriate for limestone.

The most obvious means of assessing the Bristow method
is to apply the technique to modeled data and compare the
position of the interpreted cavity as indicated by the method
of intersecting arcs to the location of the actual cavity.
Figure 3 displays a series of pole-dipole traverses over a
cylindrical cavity having a radius of 1.0 m and a depth to the
top of 1.0 m. For each traverse the current source has been
placed at a different point on the surface, giving some
semblance of the redundancy used to find cavities in the
field. Note that as the current source is brought closer to the
cavity, the resulting electrical anomaly decreases in ampli-
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Fic. 3. Pole-dipole traverses over a nonconducting cylinder
having depth to top of 1.0 m and radius 1.0 m, for current
electrodes placed at various points on the surface. The
location and size of the cavity as indicated by application of
Bristow’s interpretive method to the data are shown, as well
as the size and location of the actual simulated cavity.
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tude while becoming increasingly asymmetric (noted previ-
ously by Spiegel et al., 1980, based on results from their own
mathematical modeling). Heuristically, the decrease in
anomaly amplitude as the current electrode is moved closer
to the target can be attributed to the fact that the voltage
measurement is made at a location farther from the anomaly
source.

Figure 3 also illustrates the result when the Bristow
interpretive technique is applied to the depicted data. The
interpreted cavity shown represents the intersection of
seven anomaly arcs drawn from seven pole-dipole traverses
(including the four illustrated in the figure as well as three
additional traverses from current electrodes situated the
same distance away on the opposite side of the cylinder).
Deciding precisely where to draw boundaries of the anomaly
arc depends, of course, on the individual interpreter. We
chose to sketch the inner boundary from a subtle inflection at
the base of the anomaly (as shown), then measured the radial
distance from that point to the point of maximum amplitude
of the anomaly and drew the outer boundary equidistantly on
the opposite side of the point of maximum amplitude.
Comparison of the interpretive cavity with the actual simu-
lated cavity indicates that for this particular case the Bristow
method yields a remarkably accurate approximation of not
only the location but the size of the cavity as well.

By way of comparison, Figure 4 depicts four pole-dipole
traverses similar to those in Figure 3 except that they were
calculated over a cylindrical cavity having a depth to top of
2 m rather than 1 m. As one might expect, and indeed as
Owen (1983) remarked based upon earlier modeling studies,
the increased depth results in somewhat broader anomalies
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Fic. 4. Pole-dipole traverses over a nonconducting cylinder
of depth 2.0 m and radius 1.0 m for current electrodes placed
at various points on the surface. As in Figure 3, the location
and size of the cavity as indicated by application of Bris-
tow’s interpretive technique to the data are shown, along
with the size and location of the actual cavity.

having relatively smaller amplitudes. Consequently, the in-
terpreted cavity imparts a slightly less accurate representa-
tion of the size of the object than when the cavity was closer
to the surface. Nonetheless, the method still gives an excel-
lent approximation of the location.

While the Bristow method may not be infallible in predict-
ing the size of a given cavity, obviously the method’s critics
are incorrect in their assertion that the procedure is falla-
cious. Myers (1975) cited Bates’ observation that the anom-
aly becomes sharper as the distance between the potential
electrodes is decreased as clear evidence that the variations
in resistivity being mapped by the method are actually of
surface origin. Van Nostrand and Cook (1966), however,
note that the voltage drop V in equation (1) represents the
line integral of the potential gradient between the two
electrodes, making the apparent resistivity p, an expression
of the ‘‘average gradient’ therein and consequently serving
to subdue the cavity-induced anomalies it was designed to
resolve. Thus, decreasing the distance between the potential
electrodes can be expected to increase the resolution of a
given resistivity array, and indeed the results displayed in
Figure 5 confirm this. Note that the resolution improves as
potential electrode spacing is decreased regardless of the
depth of the target. Moreover, this improvement occurs not
just for the pole-dipole array but for other electrical resistiv-
ity arrays as well, which explains, for instance, why the
Schlumberger array tends to be more sensitive to lateral
changes in resistivity than the Wenner array.

Myers (1975) was accurate, however, in his intimation that
the use of closely spaced electrodes would result in a more
pronounced expression of surface geoelectrical noise. Figure
6 depicts two pole-dipole traverses, using different potential
electrode spacings, over a relatively shallow spherical cavity
emplaced in an earth model incorporating randomly gener-
ated, uncorrelated Gaussian conductivity noise. A mean
conductivity of .01 s/m was used with a variance of .001 s/m
to produce results similar to what one might expect in the
field. Obviously the effects of the geologic noise are greatly
amplified by the shorter electrode spacing. However, it is
equally evident that the concomitant increase in amplitude of
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F1c. 5. Pole-dipole traverses using various potential elec-
trode spacings over a nonconducting sphere of radius 1 m at
depth 1 m. Results are shown for a fixed current electrode
location given electrode spacings, indicating a sharpening of
the anomaly as the distance between potential electrodes
decreases.
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the cavity-induced anomaly is sufficient to allow the inter-
preter to distinguish one from the other.

Of the various other properties of the Bristow method that
might be determined via modeling, the maximum depth at
which a cavity can be detected is the one which has stirred
the most debate. Several field researchers claim to have
successfully detected cavities at incredible depths relative to
the size of the void. Bates (1973), for example, ‘‘located’’ a
known cavity 8 ft in diameter at a depth of about 120 ft, albeit
the geophysical results indicated that cave and another
slightly larger cavity at about the same depth to be about 50
lateral feet from their expected locations. The discrepancy
was attributed to error in surveying the traverse.

Based upon brine-tank modeling of his tripotential tech-
nique, however, Habberjam (1969) suggested that detection
of a spherical cavity beyond a depth to the top equal to the
radius of the sphere would require ideal conditions not likely
to be found in the real earth; Myers (1975) proposed that a
Wenner array could not distinguish a cylindrical cavity at a
depth to the top greater than about the diameter of the
cylinder. If numerical modeling could verify that the maxi-
mum depth of resolution of the technique is as great as has
been suggested by field investigations, Bristow’s method
would represent a distinct improvement over other com-
monly used electrical resistivity techniques.

Unfortunately, criteria for what constitutes the limiting
depth of detection of a method can be, and in the past often
have been, very arbitrary. One might argue in the case of the
Bristow method that so long as the target produces visible
anomalies in the apparent resistivity traverse, intersecting
arcs could be drawn from those anomalies to locate their
source. In the ideal context of a mathematical model,
however, any resistive body no matter now small or how
deep produces an anomaly which is visible on some scale, so
long as the model is accurate and precise enough. Spiegel et
al. (1980), for example, present a figure which illustrates the
anomaly for a 2 by 2 m square cross-section elongate tunnel
at a depth of 40 m. However, the maximum amplitude of the
apparent resistivity anomaly is on the order of one-tenth of
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FiG. 6. Pole-dipole traverses over a nonconducting sphere of
radius 1 m and depth 1 m, in a conductive medium simulating
geologic conditions. Results are given using potential elec-
trode spacings of 0.4 m (dotted) and 1.6 m (dashed), dem-
onstrating that the anomaly can be distinguished easily from
the amplified effects of geologic noise attendant upon a
decreased electrode spacing.

1 percent of the resistivity of the host medium. Certainly we
are skeptical that an anomaly that small would be observed
in the presence of geologic noise.

Thus we come to the question at hand: at what point does
the geologic noise field obscure the desired signal? Roy and
Rao (1977) defined the maximum depth of detectability for an
infinitely resistive bed as occurring when the maximum
amplitude of the apparent resistivity anomaly dropped below
10 percent of the resistivity of the host medium, on the
assumption that a smaller anomaly would be invisible in a
‘“‘real earth”” situation. In order to achieve an intuitive grasp
of just how realistic such an assumption would be, we
applied the 10 percent cutoff to the Bristow method.

Figure 7 is a plot of the apparent resistivity values calcu-
lated for pole-dipole traverses over models of a uniform
earth having resistivity 100 {}-m and containing a spherical
cavity of 1 m radius at various depths. If we assume 110
Q*m to be the minimum below which the anomaly is lost in
the geologic noise, we find that a 1 m radius spherical cavity
at a depth to the top of 1.4 m might be detected using the
Bristow method, but given the conditions we have imposed,
the cavity with depth to the top of 2 m could not be
discerned.

Figure 8 depicts a series of pole-dipole traverses made at
right angles over models of cylindrical cavities at various
depths and normal to their strike. Naturally, the elongation
of the resistive void results in a larger electrical anomaly.
Nonetheless, given our artificially imposed minimum anom-
aly amplitude of 110 {}-m, the cavity would not be detected
if the depth to the top was much greater than twice the
cylinder radius. If the 10 percent minimum were indeed
representative of the level where geologic noise obscures the
signal, our results here would seem to discount the various
reports indicating the Bristow method can be used to find
relatively small cavities at great depth.

To test the hypothesis of a 10 percent minimum anomaly
amplitude for a target anomaly to be discerned from back-
ground geologic noise, we set out to create a noise field large
enough to obscure an anomaly with maximum amplitude less
than 10 {-m. Figure 9 illustrates four pole-dipole traverses
over spheres of 1 m radius under conditions identical to
those described in Figure 7, except that a randomly gener-
ated Gaussian noise field was introduced into the conductiv-

140 180

10

1o

Apparent resistivity (chm-m)
100 120

36 3 26 3 A% 4 08 O 06 | s 2z 18 3 &4
Horizontal digtance from the center of the sphere (m)

FiG. 7. Pole-dipole traverses over nonconducting spheres of
radius 1 m and depths to the top as indicated using a
potential electrode spacing of 0.4 m.
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ity values. Instead of a homogeneous conductive medium of
.01 s/m, a mean conductivity of .01 s/m with a variance of
.001 s/m was employed. Note that this change has the
expected effect: while the anomaly generated by the cavity
at 1.4 m depth is still discernible, an interpreter would have
difficulty picking out the anomaly generated by the 2 m deep
cavity.

At this point we are forced to ask whether our noise field
is a fair representation of the geoelectrical noise one would
expect in the real earth. For illustration, if we assume all
variation in resistivity to be the result of variation of porosity
in an otherwise homogeneous limestone, we can apply
Archie’s equation to our numbers. Archie’s equation is

1_(=®? ¢?
P Py or

in which ¢ is porosity, py is the resistivity of the fluid
contained in the pores, p, is the resistivity of the rock
matrixX, and p is the resulting resistivity of the porous rock.
For our purposes, p; is infinite (being the resistivity of air)
and p, was assumed to be about 80 Q-m (inspection of the
randomly generated resistivity values showed most, though
of course not quite all, to be above 80). Using these numbers
and the values used to generate our noise field, we found a
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FiG. 8. Pole-dipole traverses over nonconducting cylinders
of radius 1 m having depths to the top as indicated using a
potential electrode spacing of 0.4 m.
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Fi6. 9. Pole-dipole traverses over nonconducting spheres of
radius 1 m in a conductive medium incorporating statistical
noise. Depths of spheres are as indicated.

mean porosity of about 10.6 percent, with a variance of
about 4.4 percent. A mean porosity of about 10 percent 1s
certainly reasonable. It is more difficult to evaluate the
likelihood of a 4-5 percent variance for porosities in 20 by 20
by 20 cm blocks, because data regarding the statistical
variation of rock properties are sadly lacking. The maximum
depth of cavity detection using the Bristow technique, or any
other method, naturally is greater at sites where the variance
of rock properties is smaller. Moreover, in trying to achieve
a representative determination of the maximum depth of
resolution one would have to entertain the possibility that
variation of earth parameters in a karst terrain is not entirely
uncorrelated, as well as somehow to account for the aug-
mentation of the anomaly signature resulting from the
“*halo’” of higher porosity which often surrounds a solution
cavity.

Although the considerations noted above may limit our
ability to set a firm value for maximum depth of detection of
the Bristow method, our approach may also be used to
compare the pole-dipole array employed in the method to
other electrode arrays. Roy and Rao (1977) suggest that the
pole-dipole array can detect a resistive bed at the greatest
depth of any of the linear electrode arrays, and indeed Figure
10 reveals that for a cavity relatively near the surface, the
pole-dipole array produces a somewhat larger anomaly than
either the dipole-dipole arrangement or the Wenner config-
uration favored by Myers (1975) and Creedy (1975).

CONCLUSIONS

The Bristow method is a legitimate tool not just for
detection, but also for delineation of cavities; further, it is
probably the most sensitive electrical resistivity technique
advanced for those purposes to date. The pole-dipole array
yields better results than the arrays employed in, for in-
stance, the tripotential technique postulated by Habberjam
(1969). Recent innovations in data-gathering procedures,
such as the switching system reported by Smith (1986) and
Owen (1983), allow more rapid acquisition of information
and subsequently greater redundancy of traverse coverage,
thus permitting greater sensitivity at the method’s threshold
of detection in noisy environments.
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Fi6. 10. Apparent resistivity traverses made over a noncon-
ducting cylinder of radius 1 m, depth to the top 2 m using
pole-dipole (unbroken line), dipole-dipole (dashed), and
Wenner (dotted) electrode arrays.
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Based on the modeling reported here, investigators wish-
ing to use the Bristow method might consider one minor
modification. In the field the potential electrodes should be
placed as close together as the system’s voltage measure-
ment precision permits to maximize the sensitivity'of the
technique. In any case the spacing should certainly be less
than the radius of the smallest cavity one is seeking. More-
over, the sampling interval should be less than the radius of
the smallest desirable cavity in order to avoid possibly
missing the target-induced anomaly.

It is difficult to establish a firm limit on the depth of
detection of the method because of the absence of reliable
information regarding the statistical variation of rock prop-
erties in situ. A porosity variance of less than 5 percent in the
parameters of our model produces enough noise on apparent
resistivity profiles to obscure cavities deeper than their
diameter, while field investigations suggest the method can
be used to find relatively small cavities at very great depths.
Note, however, that virtually all of the successful applica-
tions of the method thus far have occurred in searching for
solution cavities in limestone. Perhaps the only exception is
given by Owen (1983), in which he detailed the results given
by a computerized interpretive program applied to Bristow
data over a tunnel through solid granite. Given the success
with which the Bristow method has been applied to cavity
detection, it would be interesting to explore how easily it
might be adapted to the detection and delineation of other
near-surface phenomena.
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