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Singularity removal: A refinement of resistivity

modeling techniques

T. Lowry*, M. B. Allen}, and P. N. Shive*

ABSTRACT

Modeling techniques commonly exhibit errors of 3 to
10 percent or more in the calculation of apparent re-
sistivities over earth models for which analytic solutions
are easily available. A singularity occurs in the solution
of any elliptic partial differential equation for which the
forcing function is not smooth. The inability to ad-
equately represent in discrete space a discontinuous
function (in this case, the delta function describing the
introduction of current at a point) commonly results in
numerical error near the source of a modeled singular-
ity.

Inspection of an integrated finite-difference method
for modeling the dc resistivity geophysical technique in-
dicates much of the error encountered is of singular
origin. A procedure is herein detailed by which the
singularity is mathematically removed from the mod-
eling process and reintroduced as a last step, thus pre-
venting it from contributing to the numerical error.
Using this procedure, the average error in apparent re-
sistivity values for a model of a polar-dipole traverse
over a nonconducting sphere is reduced by 40 percent.
For a dipole-dipole traverse of a two-layer model the
error decreases by 75 percent, and in the case of a
Wenner profile of a model of a vertically faulted earth,
the average error is diminished by 90 percent.

INTRODUCTION

Data acquired in electrical prospecting are most often inter-
preted by comparison to solutions for the electrical responses
from various earth models. The geophysicist’s ability to inter-
pret such data is constrained by the variety and complexity of
solutions available for comparison.

The first numerical approach to modeling resistivity and
other electrical geophysical methods surfaced about 30 years

ago with the introduction by Alfano (1959) of an integral
equation formulation over a multilayered conductive medium.
Nothing more was attempted in this vein for a full decade,
however, until Dieter et al. (1969) applied the same method to
computing the electrical response over various spheroidal and
ellipsoidal bodies. At about the same time, Jepsen (1969) re-
ported a finite-difference representation of the two-
dimensional (2-D) resistivity problem, and Coggon (1971) pre-
sented a 2-D finite-element technique.

Integral equation solutions have been the most popular of
the numerical approximations discussed in the literature
(Pratt, 1972; Bakbak, 1977; Lee, 1975; Barnett, 1972; and
Hohmann, 1975). More recently, the technique has found ap-
plication in the modeling of various conditions which compli-
cate the interpretation of resistivity data, such as topography
overlying the targeted heterogeneity (Spiegel et al.,, 1980; Xu et
al., 1988) and the delineation of conductive bodies using
buried current eléctrodes (Daniels, 1977; Poirmeur and Vass-
eur, 1988).

Discussion of the finite-element and finite-difference meth-
ods is a bit more sparse, perhaps because the computational
expense associated with these methods is large relative to the
integral equation technique. The generality of a volumetric
discretization can be advantageous, however, especially if the
modeler wishes to incorporate such features as geologic noise,
gradational change, or even anisotropy in earth parameters.

Several variations on the 2-D problem have been presented,
including 2-D finite-difference simulations developed by Mufti
(1976), Dey and Morrison (1979a), and Mundry (1984). Fox et
al. (1980) looked at topographic effects using finite-element
approximations, and Bibby (1978) proposed a finite-element
scheme expressly for bodies having a vertical axis of sym-
metry. It was not until 1979, however, that Dey and Morrison
(1979b) reported an actual three-dimensional (3-D) finite-
difference algorithm. Pridmore et al. (1981) followed soon after
with an investigation of a 3-D finite-element technique.

Both papers dealing with 3-D approximations acknowl-
edged an error of from 3 to 10 percent in the calculation of
apparent resistivities over earth models having analytic solu-
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tions. We have determined that much of this error is due to a
singularity, or discontinuity, which occurs in the forcing func-
tion of the partial differential equation describing the problem.

It should be noted that Okabe (1979) and others have dis-
cussed singularities occurring in the integral equation numeri-
cal approach. The singularities they treated, however, arise
from the method itself and hence are quite different from those
encountered using the finite-difference and finite-element tech-
niques. Charbeneau and Street (1979) addressed those point
singularities which occur in the finite-element modeling of
groundwater flow, but no one up to this point has described a
satisfactory means of handling singularities typically found in
volumetric discretizations of the electrical resistivity problem.

While it is possible to mitigate singular error by using very
fine grids, in three dimensions this radically increases the com-
putational expense. In this paper, a method is employed by
which the singularity is removed from the numerical process.
This avoids the associated error and improves the accuracy of
the solution while maintaining an affordable grid size. Several
examples are given demonstrating the increased accuracy of
the new method. Since the changes made require virtually no
additional computation time, the numerical approximation in-
corporating singularity removal is a distinct improvement
over previous methods.

THE DOMAIN EQUATION

The partial differential equation governing the resistivity
problem is easily derived from a few basic tenets of electrical
theory. Using the principle of conservation of charge and the
continuity equation as it applies to charge flow, we have for a
point source

V-J:(‘—;P-S(x - X,),
ot

where J is current density and x, is the spatial position of a
point source at which the charge density p is specified. Ohm'’s
law relates current density to the conductivity ¢ of the
medium and the electric field E as

J =cE.

If the electric field is stationary, it can be defined in terms of a
scalar potential @ as

E = —VO.
Combining all three of the above relations yields

V. [c(x)V@(x)] = — ‘;—i’ 3(x — x.). (1)

The charge source in the case of the resistivity method is an
injected current, and thus

p .
= 8(x — x,) = I8(x — x,), (2)
¢

where I is the current. After substituting equation (2) into
equation (1), the domain equation to be solved numerically
becomes

\’ [G(X)V(D(X):l = —I8(x — x,). (3)

DISCRETIZATION AND FINITE-DIFFERENCE
APPROXIMATION

We use the integrated finite-difference approach to the 3-D
resistivity problem introduced by Dey and Morrison (1979b)
and used more recently by James (1985). The problem is dis-
cretized in such a way as to place the nodes at which potential
is to be determined at the corners of conductive blocks, each
block having a constant conductivity o throughout its volume.
Individual nodes are indexed in the x-direction by i =1, 2, 3,
-+, L;in the y-direction by j=1, 2, 3, ---, M; and in the
z-directionby k = 1,2,3,--+, N.

Conductivities are allowed to vary from block to block in
some approximation of the desired spatial distribution, with
the conductive blocks indexed such that o, ; , is the conduc-
tivity of the block lying just below, behind, and to the right of
node (i, j. k) on a left-handed coordinate system with z increas-
ing downward (see Figure 1). We make the assumption that
the grid is uniform in each of the coordinate directions with
grid spacings Ax, Ay, and Az. At each node (i, j, k), equation
(3) can then be integrated over the elemental volume
AV = AxAyA:. Green’s theorem is applied, converting the
volume integral to « surface integral and yielding the integrat-
ed equation

cn

CP(x) . “
jf o(x) ds; ;= —18(x;— x)0(y;— y)8(z, — z), 4)
Niik

where ¢/Cn is the outward normal derivative and we assume
that (x,. vy, z,) coincides with a node. After substituting a
first-order forward finite-difference approximation for the
¢®/cn term in equation (4) and evaluating the surface integral,
the equation becomes

“yjyk“)
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FiG. [. Stencil depicting the indexing scheme used for the

integrated finite-difference discretization (adapted from James,
1985).
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Ci.j,k—1q)i,j,kAl+Ci.j—1.kq)i.j—1,k+ci—1,j,kq)i—1.j,k
+Ci,j,kq)i.j.k+ci+l.j,kq)i+1.j.k+ci,j+l,kq)i,j+l,k
+Ci 1 P = _Is(xi_xs)s(yj_ys)s(zk_Zs)’ (5}

in which the coupling coefficients C are defined as

AxAy

Cijx1 = 4Az Ci1,j-1,k-1 T O j-1,k-1
+0i—1,j.k—1+oi,j,k—1:|’ (5a)
AxAz

Coj1x= 4y Ci1,j-1,k-1 T 0i j-1,k-1
+0i—1,j"1.k+oi.j—1,k:|’ (5b}
AyAz

Ci~~1.j.kE4Ax Ci1,j-1,k-1 T Cimq jx-1
+0i—1,j—1,k+0i—1,j,k:|’ (5¢)
AyAz

C[+1.j.kzm Cij-1.k-1 T Cijr-1
+0i.j1,k+oi,j,k:|’ (5d)

. _ AxAz

('i,j+1,k= 4Ay Ci1.jk-1F 0 k-1
+0-i41.j,k+0-i,j.k:|’ (Se)
AxAy

Cijre = 2A- i 1j-1.k T Oij-1,k
"‘Uit.j,k"'oi,j,k} (5}

Cji= _I:Ci.j.k—l +Ci it Gtk

+Ci+1.j,k+ci,j+l,k+Ci,j,k+1:|‘ (5g)

We solve equation {5) for the potential @ at each of the nodes
(i, j, k).

BOUNDARY CONDITIONS

For a given discretization, the problem is solvable provided
the following elemental boundary conditions are met: (1) the
potential ® must be continuous across boundaries dividing
elements of differing conductivities and (2) the normal compo-
nent of current (J, = od®/dn) must also be continuous at such
boundaries.

Because equation (5) can be made to satisfy these con-
ditions, we can guarantee the existence of a unique solution by

imposing domain boundary conditions of the form

od
ax)® + Bx) °a—n = g(x) (6)

provided a{x) = 0; B(x) = 0; [a(x} + B(x)] > 0; and ofx) # 0
for at least one boundary point x.

Air is virtually nonconductive, so a “no-flow” Neumann
condition (é®/én = 0) is adopted at the air-earth interface
z=0. On the other domain boundaries, however, different
authors have used a variety of approximations in an attempt
to find one giving the best approximation to the solution for
the semiinfinite domain z > 0. Coggon (1971) imposes both a
Dirichlet condition (® = 0) and a no-flow Neumann condition
on his finite-element model and then averages the results.
James (1985) employs a mixed-boundary condition in which «
and P in equation (6} are independent of position x and are, in
fact, chosen to be the optimal values for a given grid extent.

Dey and Morrison (1979b) propose another mixed-
boundary condition based on the physical behavior of the
potential at a given distance r from a point source. The solu-
tion for a current source placed at the surface of a uniformly
conductive half-space is

O(x) = , (7
2nor
and thus
ad(x) _ 1 d(x)
on __2nor2r.n—— r cos 6.

where 0 is the angle between the unit outward normal @ and
the radial vector f. Thus, equation (6) becomes

cos 0 od(x)
d(x) +

= 0. ®)

r

In the event that a source-sink or dipolar current source is
used at the surface, the closed-form solution over a uniform
half-space is given by

oo L (L1 ,
(x)_Zno rn_rb)’ ©

in which r, is the distance to the positive electrode and r, is
the distance to the negative. In this case,

OD(x) 1 (cos 0, cos 6,,)

= T 5 2 2
on 2no \ 1, ry

_ 1 1 1\/cos$,

2o |\r, r,
cos 0,,) cos 0,—cos BbJ

+ + ,

ra p

p

yielding the mixed-boundary condition

(cos 0, N cos 6,,) o) + oD(x)

r, r, on
_ (cos 0, — cos 6,,). (10)
2no Ty

If the conductivity were not homogeneous, equations (8)
and (10) would each contain additional terms reflecting the
perturbation of the potential due to the heterogeneity. The
effects of the perturbation decay with distance, however,
making the two boundary conditions acceptable approxi-
mations given that the boundary is in some sense far away
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FIG. 2. Analytic (solid line) and numerical (broken) solutions for the potential about a 100 A current injection point

over a half-space of constant conductivity .01 S/m.

from those parts of the domain at which the solution is of
interest. We opted to incorporate equations (8) and (10) as the
boundary conditions on cur model simply because they
seemed the most physically reasonable of those considered.
Dey and Morrison (1979b) also proposed that grid cells be
lengthened near the computational boundaries of the domain
in an effort to reduce the error associated with the approxi-
mate nature of the boundary conditions. This device is useful
only if one can balance the tradeoff between diminishing ef-
fects of boundary error and the poor approximation that re-
sults from using elongated grid blocks (Pridmore et al.. 1981).
Having no rigorous means by which to determine such a bal-
ance, we chose to use uniform grids throughout.

SINGULARITY REMOVAL

A singularity arises in the solution of a given elliptic partial
differential equation

V. (oV®) = f(x)

whenever the right-hand side function f{x) is not smooth {Fox,
1979). Certainly the delta function describing the right-hand
side of equation (3) is not smooth, and so we expect to see a
singularity in @ centered at any point source or source sink of
charge.

Straightforward numerical approximations typically give
poor results near such singularities, and indeed, for the poten-
tial over a homogeneous conductivity distribution, compari-
son of the integrated finite-difference numerical solution to
that calculated using relation (7) indicates a systematic error
in the model solution. Figure 2 is a plot of the two curves.
Because the potential gradient is so high near the charge
source, the two curves appear to be very close. However, when
we look at the percent error of the numerical solution, we find
the error is actually relatively large near the current injection
point. Figure 3 illustrates the percent error in potential over a
uniform half-space in the presence of a singularity with data
points represented as open circles indicating the error due to a
single point source of current and open squares delineating
the error associated with a source directly adjacent to a cur-
rent sink.

Fox (1979) discusses two relatively simple techniques com-
monly used to freat singular error. Grid refinement near the
singular point decreases the error by rapidly reducing the size
of the higher order terms in the truncation error of the differ-
ence scheme. However, the coding difficulties which must be
overcome in order to permit the arbitrary location of a point
source make the grid-refinement approach unwieldy.

The second, and preferred, method for removing singular
error exploits the linearity of the problem by splitting the
potential in equation (3) into two parts:

O(x) = O, (x) + O, (x). (11

Here @, represents the response to the singularity, and @,
represents the regular or nonsingular part of the potential.

An average conductivity & for the domain Q can be defined
as

/ L.M,N
c:J~ olx) de~ dx= 3 o, ; /LMN.
[ {Jo '

i jok=1

Then for a point source located at the surface, @, is the ana-
lytic or closcd-form solution to the partial differential equa-
tion

V2O, = —I¥(x — x,) (12)
given by
1
®\‘ =1 _ (13)
2nor

where r is the distance from the singularity. Virtoally all of the
singular error in the numerical model is contained in the
singular part of the potential, so the sleight of hand we per-
form here 1s to treat @  as a known quantity given by equation
{13). substitute equation (11) into the domain equation (3), and
then subtract the singular part of the equation as represented
in equation (12). This leaves

V. {G(X)V‘Dr(x) + [o(x) — G]ths(x)} =0.

Moving the known part of the relation to the right-hand side,
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the domain equation, which is used to numerically solve for
the unknown @, , becomes

V- [o(x)VO, (x)] = —V - {[c(x) - GJVCDS(X)}. (14)

Applying the same discretization scheme as was described
earlier, integrating about each node point, and substituting the
forward finite-difference approximation for the derivative
terms yields

r r r
Ci.j.k—ld)i.j.k—l + Ci,jfl,kd)x}j‘l.k + Ci—}.j.k(DkLLk
r r
+Co i@t Coon jn P,y

r r
+ Ci.j+1.kd)i.j+l.k + Ci.j.k+1q)i.j,k+1

_ AxAy
= g —
Az

S
Ci.j.k— 1>®i.j,k—1

_ AxAz N
S =G Ok

5
- Ci71<j< k>®il,j.k

AxAz  AyAz .
+ Ay )~ Coir [P

+
N N e e N
I
(W)

Q

B /=
>
=

Q>
=

S
- Ci.j+ 1. k>®i.j+ 1.k

- Ci,j.k+1>d)?.j.k+1‘ (15)

The coupling coefficients C are identical to those defined for
equation (5).

For the case of a single charge source, the boundary con-
ditions on the problem do not change with the splitting of the
potential into its component parts. At the ground surface, we

7.5

7.5 10 12.5
I L L

5
1

Percent error of the potential

4 [} 8 10 12 14
Distance from the charge source {x/delta-x}

FiG. 3. Percent error of the numerical solution for potential
near singularities due to a point source (denoted by open
circles) and source sink (squares).

now have
- [d), (x) + d)s(X):' =0,
yielding
00, (x) 0D, (x)
—_—= = =0
on on ’ (16)

which is the no-flow Neumann condition we had before. Over
the other boundaries, the mixed condition we had previously
becomes

~

[cb, (x) + @, (x)} + é [cb, () + cbs(x)} —0,

cos 0

which, when known parts are placed on the right-hand side,
gives

cos 0 0w, (x) cos 0 0D, (x)
— O, (x)+ :—[ - D, (x)+ P :|=0; (17

v
so again the boundary condition for the regular portion is the
same as that for the entire potential.

The boundary conditions are altered slightly, however, in
the event that a dipolar charge source is used. Equation (10),
expressed in terms of component potentials, becomes

<cos 0, cos@, >[ :' 3 [ :'
+ D, (x) + D, (x) | + — | D, (x) + D (x)
r ry on

a

_ I [cos8,—cos0,
2o r. T '

a

~

Rearranging terms and recalling that @, is an exact solution to
a semiinfinite domain problem with uniform conductivity, we

find
cos 0, cos 0, 0®, (x)
+— )0, (x) +
I , on

_ _(cos 0, N cos 6,,> o, (x) — oD, (x)
Fy r, on

B (cos 0, — cos 9b> _o (1)

2nc Faty

a

Thus, the forcing function on the boundary condition is made
to disappear.

It is worth noting that although the straightforward appli-
cation of the integrated finite-difference method gives a poor
representation around singularities, the solution does converge
with refinement of the grid mesh. Figure 4 is a plot illustrating
the convergence over a uniformly conductive half-space of the
scheme without singularity removal and with singularity re-
moval incorporated. The log-log convergence plot is designed
to test the hypothesis that the error is proportional to A" for
some power n, where A is the largest of the grid-mesh dimen-
sions Ax, Ay, and Az The plot without singularity removal
suggests n ~ 2, which is in agreement with standard theory
regarding elliptic equations as approximated by a seven-point
finite-difference method (Birkhoff and Lynch, 1984). Note that
once the singularity has been eliminated, allowing the numeri-
cal scheme to model only the smooth part of the solution, the
magnitude of the error is typically much smaller. In fact, for
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F1G. 4. Log of the Euclidean error norm of the potential versus
log of the grid mesh for a uniform half-space. Results without
singularity removal are represented as a dashed line: those
with singular error removed are dotted. The unbroken line,
having slope 2, shows the favorable comparison between
actual and expected convergence with refinement of the grid.

the uniformly conductive case the error associated with the
smooth part vanishes as well: the small, erratic errors traced
by the dotted curve in Figure 4 are comparable in magnitude
to the errors inherent in the algebraic solution of the matrix
equation which results from the discretization of the problem.

MATRIX FORMULATION

The discretized equation (15) in conjunction with the
boundary conditions (16), (17), and (18) is evaluated at each of
the nodes (1, j, k) and the resulting system of equations is then
assembled in a matrix form which can be expressed in matrix
notation as

Here € is a septadiagonal, diagonally dominant symmetric
matrix of dimension LMN x LMN containing the coupling
coefficients and is dependent only on the geometry and physi-
cal property distribution of the grid (Dey and Morrison,
1979b); ®, is the solution vector containing the unknown
values of the regular part of the potential; and s holds the
forcing terms which resulted from subtraction of the singular-
ity.

The system of equations was solved using a conjugate

&

l‘I r2 r3
AN
D

e

FI1G. 5. An arbitrary dc resistivity electrode array.

NN
N\

gradient algorithm found in Obeysekare et al. {1987) with a
simple incomplete L-U decomposition preconditioner.

CALCULATION OF APPARENT RESISTIVITY VALUES

As suggested by equation (11), to get the actual potentials at
the nodes (i, j, k), we must add the numerically determined
values ®, to the singularity response embodied in ®,. Once
this 1s accomplished, the apparent resistivity for any arbitrary
arrangement of current and potential electrodes at the ground
surface is given by

_ZIIA(D i
P =\, — =y + )

where the distances r are as illustrated in Figure 5.

Over a homogeneous half-space, the apparent resistivity p,
would represent the true resistivity of the medium. In the case
of a heterogeneous distribution of conductivity, p, is the true
resistivity value that would be necessary if the conductivity
were in fact uniform to produce the observed voltage given the
electrode geometry and current used. The apparent resistivity
values, once plotted and compared to type curves computed
by various means over known conductivity distributions, are
used to interpret data generated using the resistivity method.

COMPUTATIONAL RESULTS

Apparent resistivities are calculated over three different
earth models using three different electrode arrays, chosen be-
cause they are employed fairly commonly in the field. For
each model the results are plotted alongside the analytic solu-
tion, represented as an unbroken line. The numerical solution
for which the singularity was not removed is represented by a
dashed line and that with the singular error deleted is shown
as a dotted line. The average percent error of a given apparent
resistivity profile is calculated as being the sum of the percent
error at each of the profile points divided by the number of
points.

The first simulation is of a two-layered earth model (see
Figure 6} identical to that presented as an example by Dey
and Morrison (1979b, Figure 4). The systematic error in the
method for which the singularity was not removed is obvious
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FI1G. 6. Analytical and numerical results simulating a dipole-dipole array over a two-layered conductivity distribution.
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F1G. 7. Results for the Wenner array profiling a vertical discontinuity in conductivity.
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FIG. 8. Analytical versus numerical results using a pole-dipole array over a nonconducting sphere.

near the current dipole, whereas with the singularity removed
the numerical curve is almost indistinguishable from the ana-
lytic solution except near the boundaries of the grid. Here
boundary condition errors begin to affect both profile curves.
The average error in apparent resistivity was reduced from
5.51 percent for the model without singularity removal to 1.51
percent for the model using the singularity removal technique.

The second model has a vertical discontinuity between two
media of different conductivities (Figure 7), akin to a vertical
fault extending to the surface. This time a Wenner array in
profiling mode is used, incorporating an a spacing of 4A. Not
surprisingly, there is a marked difference between the solutions
with and without the singular error removed. The average
error without singularity removal is 3.58 percent; with the
singular error removed, it dropped to 0.29 percent.

The Jast of the models given herc (Figure 8) approximates
the use of a polar-dipole array with stationary current elec-
trode, profiling over a nonconductive sphere. The improve-
ment is much less dramatic than it was for thc other two
models, going from 1.37 percent average error in the apparent
resistivities to 0.83 percent when the singularitics were re-
moved.

DISCUSSION

While it is apparent that the solutions calculated with the
singularity removed are more accurate, it might seem from the
examples given that the amount of improvement is inconsis-
tent from one model to the next. The differences can be at-
tributed heuristically to the nature of the electrode array used
in each case. Inspection of Figure 3 suggests two properties of
singular error: (1) the error falls off with increasing distance
from the source of the singularity, and (2) the more singular-
ities present, the larger the error. Thus the sphere problem
shows the least improvement of the three because the polar-
dipole traversing technique we used incorporates a single
stationary current source and most of the measurement points
are relatively distant from it. Indeed most of the error in this

particular model is a result of the fact that the “non-
conductive” sphere must actually be given a very small con-
ductivity to guarantee convergence of the numerical scheme.
The dipole-dipole traverse employed for the two-layer earth
model again has most of the measurement points relatively
distant from the current electrodes, but the improvement ex-
hibited is somewhat greater because these are two sources of
singularity instead of one. The vertical-fault model profits the
most from the inclusion of the singularity removal scheme,
because the Wenner array used not only involves two current
sources but also requires that the measurement points be rela-
tively nearby.

The integrated finite-difference modeling program with
singularity removal requires no additional computational timme
to run, and thus is decidedly advantageous to use. Note that
singular error is not limited to the finite-difference method;
nor s it to be found solely in association with resistivity mod-
cling. Any time onc attempts to model numerically a partial
differential equation containing point sources and sinks, singu-
lar error oceurs. So long as there is some closed-form solution
to the problem. however, subtraction of the singularity as de-
tailed here can be used to remove the error.

CONCLUSIONS

We have proposed a 3-D integrated finite-difference scheme
using a singularity removal technique for electrical resistivity
modeling. Results are compared for models with and without
singularity removal over conductivity distributions having
analytic solutions. A marked increase in accuracy is demon-
strated when the singular error is removed. The improvement
Is particularly dramatic for the modeling of profiling arrays
such as the Wenner array, which necessitate the placement of
potential electrodes relatively near the current electrodes. By
employing the singularity removal scheme detailed here, an
acceptable degree of accuracy can be achieved modeling any
of the various electrode arrays without having to resort to an
extremely fine grid mesh.
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