Surface versus internal loading of the Tharsis rise, Mars
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Abstract.

Two hypotheses compete to explain the remarkable topography

and geoid of the Tharsis province on Mars: One attributes Tharsis to

volcanically constructed surface loads, whereas the second views it as dynamic
effects of single-plume mantle convection. Both are likely to contribute, so we
would like to constrain both. We introduce a method to invert load structure

from geoid and topography of a viscoelastic planetary body. Estimates of
the internal load contribution to Tharsis depend on assumed parameters.
Buoyancy of the internal load estimate increases with increasing lithospheric
thickness, crustal density and crustal thickness, and load size increases
with depth of loading. Despite parameter uncertainties, we can rule out a
predominantly internal load. We cannot reject the possibility that Tharsis
results from surface loading alone. Internal loads contribute at most 35%
of the lithospheric force balance, 50% of the topography and 25% of the
geoid at Tharsis, for load depths <420 km and lithospheric thickness 7, <200
km. A corollary is that any 7, and reference density structure can exactly
reproduce the geoid and topography if internal loading can vary as a function
of harmonic degree and order. Hence, T, and density estimates depend
on assumptions about internal loading. If surface and internal loads are
approximately uncorrelated, 7, is ~110 km with crustal density ~2600 kg

3

m~°. Adopting these parameters, internal buoyancy contributes 2.1% of
lithospheric loading, 4.2% of topography and 0.7% of the geoid at Tharsis for
a 200 km deep load, or 4.3% of lithospheric loading, 8.5% of topography and

2.2% of the geoid for a load at 400 km depth.

1. Introduction

The Tharsis rise is easily the dominant feature in
the Martian geoid (or areoid), and among topographic
features, Tharsis is rivaled only by the extreme topo-
graphic contrast between northern lowlands and south-
ern highlands [Smith et al., 1999a, b]. Tharsis occupies
about one fifth of the Martian surface area, with an
average elevation of more than five km (Figure 1). Sev-
eral of the highest volcanoes in the solar system are

within the Tharsis province, including Olympus Mons
at >21 km summit elevation. The entire region is sur-
faced by shield volcanoes, basaltic lava flows and ign-
imbrite deposits with ages spanning Noachian to Ama-
zonian time— effectively, the last 4 Gyr of Martian his-
tory [Tanaka et al., 1992]. Extensional grabens ra-
diate from the Tharsis rise and from magmatic cen-
ters therein, and contractional wrinkle ridges form con-
centric patterns around the rise [Tanaka et al., 1991].
The density and timing of these features suggests that
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Figure 1. Topographic expression of the Tharsis rise
in shaded relief (2500 m contour interval). The thick
dotted line delimits the region of mass averaging used
to assess lithospheric loading of Tharsis.

the associated lithospheric loading processes peaked in
Noachian and generally decreased through time to the
Amazonian epoch [Anderson et al., 2001].

The extensive, long-term stationary volcanic activ-
ity on Tharsis has prompted two end-member hypothe-
ses for the origins of Tharsis topographic and areoid
anomalies. The first hypothesis proposes that the Thar-
sis rise formed by processes of volcanic construction and
shallow magmatic intrusion, and that the areoid and to-
pographic expression reflect the response of an elastic
lithosphere to a voluminous volcanogenic load [Wille-
mann and Turcotte, 1982; Solomon and Head, 1982].
Investigators have cited several observations support-
ing a predominantly surficial Tharsis in addition to the
topography and areoid. For example, most Noachian-
aged tectonic structures are well-explained by strain
of an elastic lithosphere in reponse to a Tharsis sur-
face load [Willemann and Turcotte, 1982; Banerdt and
Golombek, 2000]. Phillips et al. [2001] also relate the
distribution of Martian valley networks to fluvial pro-
cesses responding in part to surface loading of Tharsis.

2

The surface loading hypothesis assumes that the con-
tribution from internal mass variations is negligible.
However, one would expect significant internal mass
variations given the thermal and chemical processes im-
plicit for such a large stationary magmagenic system.
Consequently, a second hypothesis attributes the Thar-
sis topography and areoid to thermal buoyancy of a
stationary plume in the mantle beneath Tharsis [Carr,
1974; Kiefer et al., 1996; Harder and Christensen, 1996;
Harder, 2000] and/or chemical buoyancy of the basalt-
depleted residuum [Sleep and Phillips, 1979]. Similar
to the surface loading hypothesis, distributions of tec-
tonic structures have been cited in support of buoyant
internal loading [Carr, 1974; Harder and Christensen,
1996; Mege and Masson, 1996]. Convective models of
Martian evolution suggest that a single plume is a natu-
ral organizational state given the Martian thermal and
phase structure, and continuing volcanism within the
Tharsis province [Hartmann et al., 1999] supports the
convective modeling conclusion that plume-generated
thermal and/or chemical buoyancy is still present to-
day [Harder and Christensen, 1996; Breuer et al., 1998;
Harder, 2000].

Most investigations have examined one hypothesis
of Tharsis formation or the other, but it is quite rea-
sonable to expect that both surface and internal load-
ing processes contribute. Synthesis of Tharsis loading
studies is complicated by differences in the modeling
approaches used to study surface loading and mantle
convection: Studies of surface loading generally assume
an elastic plate over an inviscid fluid, thus ignoring
contributions from the viscous mantle, whereas man-
tle flow models typically assume a viscous lithosphere
or ignore the lithosphere altogether. Zhong [2002] intro-
duced a generalized viscoelastic loading model capable
of simulating both instantaneous viscous flow and elas-
tic lithospheric responses to surface and internal loads.
Using that model, Zhong [2002] demonstrated that the
areoid expression of plume buoyancy filtered by an elas-
tic lithosphere is significantly smaller than that pre-
dicted by purely viscous modeling, implying that sur-
face loading processes must play an important role at
Tharsis. Zhong and Roberts [2003] extended the analy-
sis to assess possible contributions of a convective ther-
mal plume to the observed areoid and topography at
spherical harmonic degrees [=2—3.

Understanding the genesis of Tharsis topography and
areoid is key to interpreting the tectonic, volcanic and
thermal evolution of Mars [Solomon and Head, 1982],
and will factor into understanding the evolution of the
atmosphere, hydrosphere and surface morphology as
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well [Phillips et al., 2001]. The distribution of Tharsis
mass remains the largest source of uncertainty in esti-
mates of Martian moment of inertia [Bills and James,
1999] and consequently in radii of the core-mantle and
crust-mantle boundaries [Sohl and Spohn, 1997]. As a
first step toward addressing these issues, we introduce a
method for inverting the load structure from geoid and
topography of a viscoelastic planetary body. We apply
the method to spherical harmonic coefficients up to de-
gree and order 60 of the Mars Global Surveyor/Orbital
Laser Altimeter (MGS/MOLA) areoid and topography
fields [Smith et al., 1999a, b]. The load calculation re-
tains all of the information content (i.e., signs and am-
plitudes of each individual coefficient) in the estimates
of loading, and consequently we are able to examine the
loading effects localized to the Tharsis province. We
examine relative contributions of surface and internal
loading to the Tharsis areoid and topography, and we
also explore the range of possible solutions given un-
certainties in assumed parameters of Martian density
structure and lithospheric thickness.

2. Inverse Modeling of Planetary
Loading

In this section, we develop a methodology for sepa-
rating the effects of surface loading and internal mass
anomalies in the areoid and Martian topography. The
method significantly extends an inverse approach pre-
viously applied to the Cordilleran region of the western
United States [Lowry et al., 2000]. We separate the
Martian mass structure into three contributions: sur-
face topographic loads h°, internal mass anomalies &
which also act as loads, and deflection of the lithosphere
w in response to those loads. The three fields k%, w
and ¢ are calculated from equations describing flexu-
ral isostatic response and the areoid. Notation for the
development that follows is provided in Table 1.

2.1. Generalized thin-plate flexure

Following Turcotte et al. [1981], we assume a thin
spherical elastic shell with outer (planetary) radius R,
and thickness T.. We generalize the Turcotte et al.
[1981] formulation slightly to include the effects of inter-
nal loading, and we assume the lithosphere surrounds
a viscous (rather than inviscid) fluid. The flexural dis-
placement w (positive upward) in response to an applied
vertical stress p (positive downward) is governed by
[Turcotte et al., 1981; Willemann and Turcotte, 1982]:

[DV® +4D (V* 4+ V?) + ET.R. (V* +2)| w

Table 1. Notation used in this paper.

Symbol Description
« surface deformation response kernel
312 areoid uncertainty degree variance
C load amplification test criterion
D elastic shell flexural rigidity
E Young’s modulus
Fl resolved force of internal loading
Fo resolved force of surface loading
g acceleration of gravity
Y spherical Laplacian operator
2 global coherence of load fields
h surface topography
h surface load thickness
i spherical harmonic sin/cos index
1 imaginary number
l spherical harmonic degree
L load amplification limit criterion
m spherical harmonic order
N areoid
v Poisson’s ratio
Q polygonal region area
P Legendre polynomials
P lithospheric load stress
10) longitude
Ry radius of crust/mantle boundary
Ry radius of internal loading
R, mean planetary radius
00 crustal density
p1 mantle density
S load projection scaling factor
St inverse load projection scaling
o elastic shell bending resistance
T. elastic shell thickness
T elastic shell membrane resistance
0 colatitude
(C) polar coordinate of load projection
w flexural deflection
& internal load mass density
Y spherical harmonics
¢ polygonal region function

=-R,(V’+1-v)p, (1)

in which D = ET3/[12(1 — v?)] is flexural rigidity,
E is Young’s modulus, and v Poisson’s ratio.
The final topography h, flexure w and areoid N re-
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Figure 2. Example surface deformation response ker-
nels «;(Ry) relative to the areoid for a unit internal
load, using model parameters in Table 2.

sult from a combination of surface topographic load-
ing with thickness h® = h — w and a mass anomaly
at the radius of internal loading R; which has mass
per unit area £. Coupling between deep internal loads
and the elastic lithosphere attenuates with depth below
the lithosphere according to the response kernel «(Ry)
for surface deformation relative to the areoid. The re-
sponse kernel, examples of which are shown in Figure 2,
is calculated assuming an incompressible flow approx-
imation of a spherically-symmetric, viscous planetary
body [Hager and Richards, 1989]. Then the thin plate
approximation to the vertical load stress is given by

p=g(poh® + & — p1N + prw) . (2)

Here, the crust has constant density pg and the mantle
p1, and g is gravitational acceleration. Turcotte et al.
[1981] define the dimensionless parameters
ET,
T g
R2g (p1 — po)

describing the shell’s resistance to deflection due to
membrane stress, and

D

g —7
Rig (p1 — po)

(4)

describing the bending stress resistance. For conve-
nience of notation, we define 7’ and ¢’ to be the param-
eters (3) and (4), respectively, multiplied by p; — po.
Then equations (1) and (2) become

[0/ (VO +4V* +4V?) + 7/ (V2 +2)] w

4
=—(V2+1-v) [poh® + ot —pr (N—w)].  (5)

We express the spatially varying fields in equation (5)
in the spherical harmonic domain where, for example,

h(9, gb) Zi,l,m hilm)/ilm (07 (b)
w(97 ¢) = Zi,l,m wilmy;lm(ga ¢) (6)
N(G, ¢) Zi,l,m Nilmyélm (97 (b)

in which 6 is colatitude, ¢ is longitude,

mmw,as):am(cose){ cosme; ¢ =1 } (7)

sinmae;t =2

Py, are the Legendre and associated Legendre polyno-
mials normalized to 47 (geodesy normalization), and
Ritm, Witm and Ny, are the spherical harmonic coeffi-
cients of the topography, flexural deflection and areoid
respectively. In the spherical harmonic domain, the
Laplacian operator V? acts on Yj;,, as

v2)/ilm(93 ¢) = _7lnlm(9’ ¢) (8)

in which 4, = {(I+1). Substituting, the flexural relation
becomes

~{o' -+ ]+ -2
+p1 [vi — (1 = v)[}wirm
= [’Yl - (1 - V)] (pohﬁm + algilm - plNilm> . (9)

2.2. Finite-amplitude areoid response

The areoid height N due to a finite amplitude topog-
raphy H on some interface with density change Ap can
be expressed as [Wieczorek and Phillips, 1998]

r o\ 2rAp
Vo =265 () Sy

i,l,m
3y Ty (44— j)
ilm =2
Hilm + Z j"”—ln! Y;'lm(gv d)) (10)
n=2

in which G is the gravitational constant, r is the refer-
ence radius of the topography, and H}, are the spher-
ical harmonic coefficients of the topography raised to
the n'” power, H"(0,¢). Here we have adopted the
separation of the areoid equation into linear and non-
linear (i.e., higher order in the Taylor series) terms, as
suggested by McKenzie et al. [2002]. Equation (10) dif-
fers from that in McKenzie et al. [2002] by a factor of
r1=" in the higher-order terms, correcting an apparent
typographical error therein.
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Table 2. Parameters of the reference model of Martian loading.
Parameter Symbol Value Source
Planetary radius R, 3397 km (1)
Crustal density Po 2900 kg/m3 (2)
Mantle radius Ry 3347 km (2)
Mantle density p1 3400 kg/m3 (2)
Gravitational acceleration g 3.71 m/s (1)
Elastic shell thickness T 100 km
Young’s modulus E 1.44x10' Pa (3)
Poisson’s ratio v 0.268 (3)
(1) Lemoine et al. [2002]

(2) Zuber et al. [2000]

(3) McKenzie et al. [2002]

2.3. Load deconvolution Ki=v-(1-v) (17)

Equations (9) and (10), coupled with the definition
of the surface load h® = h — w, comprise a system of
three equations in the three unknowns h°, ¢ and
w. The areoid calculation depends nonlinearly on both
the observed surface topography i and the unknown
flexure w, so we write these equations with the higher
order terms in w placed on the right-hand-side as

1 1 0 [
0 CQ CS Wilm =
poKK1 Ko oKy itm
hilm .
Nitm — Cihitm — Y02 (CPR,,, + CRwh,) | - (11)
PlKlNum
Here we have defined
. 47TGRpp0 .
YT gl 1)’ (12)
[T, +4—3)
Cr = C1]]2%nf1‘§ (13)
p nl
4TFGR1(p1 — p()) (R1>l+1
= ———— | — ; (14)
g2l +1) R,
cy = 02W7 (15)
_ 4nGR; (R,)”l_ (16
3=~ | ;
g(2l+1) \ R,

Ky ={d'v} =4 +4m] +7'[n — 2] + p1 K1}, (18)

and R; is the mean radius of the crust/mantle bound-
ary. Equations (11) are solved iteratively for each co-
efficient (¢,{,m). During the first iteration the higher-
order terms in w on the right-hand-side are set to zero,
and these terms are updated at each subsequent iter-
ation until a convergence criterion is achieved. In cal-
culations presented here, we consider the solution con-
verged when the average percentage change in areoid
coefficients is less than 0.1%. Given the observed to-
pography and areoid, and assuming a “known” den-
sity structure, lithospheric thickness and internal load-
ing depth, we can uniquely solve equations (11) for the
unknown surface load thickness h°, internal load mass
¢, and lithospheric flexure w.

2.4. Singularity

Solution of the system of equations (11) converges
within one to three iterations so long as the linear sys-
tem is not close to singular for any ! < 60. Setting the
determinant of the sensitivity matrix in (11) equal to
zero and solving, one finds that a singular load decon-
volution matrix results if the internal load radius

ol ) o] (cke)

19
K> — po K1 (19)

ﬁmm{

One can readily show that when the matrix is sin-
gular, the ratio of areoid to topography coefficients,
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Figure 3. Internal load depths resulting in singularity
of load deconvolution, for model parameters in Table 2.

Nitm [iim, for pure surface loading is identical to that
for pure internal loading. Hence, the relative contribu-
tions of internal and surface loading are indeterminate
if both yield the same relationship of areoid to topogra-
phy. Figure 3 depicts singular depths of internal loading
for a reference model of Mars described in Table 2. The
N/h ratios predicted for both internal loading and sur-
face loading depend on T, density structure and spher-
ical harmonic degree. N/h for internal loading is also
very sensitive to the assumed loading depth and varies
significantly between the surface and the core-mantle
boundary. Consequently, a radius of singularity will oc-
cur somewhere within the mantle for [ less than about
25. For the reference model parameters, the shallowest
singular load depth occurs for [=7 to 8 at about 400 km,
which is within the range of depths that may be rele-
vant for internal loading by a degree-1 plume structure
under Tharsis.

Near-singularity of the load deconvolution matrix
(11) can produce highly spurious estimates of load mass
if the assumed depth of internal loading is significantly
different than the true load depth. Singularity of the
load deconvolution matrix on the left-hand-side of equa-
tions (11) is a mathematical artifact stemming from
the assumption that internal loading occurs at a sin-
gle, fixed radius. In reality, planetary internal load-
ing is distributed over a range of depths, reflecting the
influence of various dynamical processes on the chem-
istry, temperature and phase of materials. However,
we cannot adequately constrain a vertically distributed
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N=0.1
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Mh=0.1

(=} }.2
I

N/h=-0.1

N/h=-0.1, : Mh=0.1

NA=0.1N NB=01  NAR=0.1N

Figure 4. Inverted loads for model parameters in Ta-
ble 2. Topography and areoid map to the ©-axis of
polar projection as h = cos @;]\7 = 0.1sin®. The re-
sulting loads are plotted on the radial axis. Black curve
is surface load, h°, and gray is the height equivalent
of the internal load, £/po, in meters. Positive loading
is solid and negative is dotted. The black bar denotes
pure surface loading (§ = 0); the gray bar pure internal
loading (k¥ = 0). Light gray filled circles correspond
to observed N/h coefficient ratios of Mars data. Very
light gray shading indicates © for which the load am-
plitude criterion C > 1. Note the radial axis scale varies
significantly in each plot. (a) {=2; internal load depth
R, — R;=400 km, (b) I=2; R, — R;=100 km, (c) [=8;
R, — R;=400 km, (d) {=8; R, — R;=100 km, (e) [=16;
R, — R;y=400 km, (f) [=16; R, — R;=100 km.

loading structure from the areoid and topography data
alone, and in the absence of other data it is reasonable
to approximate internal loading as occurring at a sin-
gle depth. Unfortunately, when the load deconvolution
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matrix in (11) is nearly singular, the iterative solution
of equations (11) may not converge. Consequently, we
must assess whether a particular estimate of load am-
plitude approximately represents the true load distribu-
tion as opposed to a mathematical singularity.

In Figure 4, we plot curves demonstrating the de-
pendence of the surface load, h°, and the internal load
scaled by crustal density, £/po, on the areoid /topography
ratio for various [ and loading depths. Load coefficients
were calculated for N/h coefficient relationships encom-
passing h = cos©O; N = 0.1sin©® for © in the range
[0,27]. Here, © is a dummy coordinate of the polar
projection, and we have used equations (11) to calculate
the surface loads and internal loads for a large number
of different values of © in order to produce the curves
shown in Figure 4. We use N = 0.1sin © instead of the
unit circle to better visually distinguish effects of load-
ing (and because areoid coefficients are typically one to
two orders of magnitude smaller than Martian topogra-
phy coefficients). The example calculations use the ref-
erence model in Table 2 and internal load depths of 400
and 100 km. In most cases shown in Figure 4, the max-
imum load amplitudes are relatively small (from 1 to 30
meters). However, for (=8 and R, — R;=400 km, the
maximum possible load size is much larger, by several
orders of magnitude. =8 and R, — R;=400 km yields
a nearly singular load deconvolution matrix (compare
with Figure 3; the actual R, — R}™ is 402.5 km).

The maximum amplitudes of loads inverted on the
h =cos©; N = 0.1sin © circle of projection is depicted
for all I = 2 to 60 for a 400 km internal load depth
in Figure 5a, and for a 100 km load depth in Figure
5b. Two effects can amplify the calculated load coeffi-
cients to physically unlikely values. One is downward
continuation of the areoid to calculate mass sources at
the depth of internal loading. Downward continuation
amplifies the mass anomaly at depth R; by a factor of
(R,/Rp)™! relative to the mass anomaly at the plane-
tary surface that would yield the same geoid anomaly.
The effects of this amplification on the calculated inter-
nal load at large [ can be seen by comparing the estimate
of equivalent internal load height (solid gray line) with
the load divided by the continuation factor (dashed) in
Figure 5. The second effect, noted previously, is near-
singularity of the load deconvolution matrix, which can
amplify both loads by several orders of magnitude when
the assumed internal load radius is near the singular
load radius R?mg.

As noted earlier, the coefficient ratio N/h predicted
for pure surface loading is identical to that for pure
internal loading when the load deconvolution matrix
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Figure 5. Maximum inverted load coefficients for

model parameters in Table 2 and projected topography
h = cos® and areoid N = 0.1sin©. Black line with
filled circles is the maximum surface load h%; solid gray
line is the internal load height £/pg. Dashed gray lines
are the maximum internal load scaled by the areoid con-
tinuation factor, £(Rr/R,)1/[po(20 + 1)]. Very light
gray shading indicates [ for which the load amplitude
criterion C can exceed one. (a) Internal load depth
R, — R;y=400 km, (b) R, — R;=100 km.

is singular. If the assumed load radius exactly equals
R?mg, no solution is possible, but this is an unlikely
occurrence. However, in the examination of Tharsis
loading that is the subject of this paper, reasonable as-
sumptions of internal loading radius commonly fall near
the singular radius for some range of [. Extreme ampli-
fication of estimated loads occurs when the matrix (11)
is nearly singular and the observed N/ is very different
than that predicted for pure surface loading (e.g., Fig-
ure 4c). If significant loading really does occur near
R?ing for a particular spherical harmonic coefficient,
Nitm /hitm should approximately equal the coefficient
ratio predicted for pure surface loading, in which case
the load amplitudes predicted by deconvolution will be
physically reasonable. If coeflicient ratios are not near
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the value of N/h predicted for pure surface loading,
however, it is likely that internal loading has signifi-
cant contributions from some other radii besides R?mg.
Hence, we enforce limits on load amplitudes at those
particular combinations of Ry, I and N/h which would

otherwise yield unreasonably large load coefficients.

The algorithm to identify physically unreasonable
amplification of loads at near-singular load radii pro-
ceeds via the following steps:

1. We determine where the observed areoid and to-

pography coefficients would project onto the (h =
cos O; N = 0.1sin O) circle via

(20)

Oitm = tan™! <O—l) .

ilm

The observed coefficients project onto the circle via
multiplication by a scaling factor Sjm,: [ﬁilma Nilm] =
Silm [hilm7 Nilm]7 where Silm = COs @zlm/hzlm

2. We multiply the right-hand-side of equations (11)
by Siim, and then we solve the system of equations for
(RS, s Witm, Eim ). Here the tilde denotes the solution on
the (iL = cos®; N = 0.1sin 0) circle of polar projection,
as distinct from the solution using the observed areoid
and topography coefficients.

3. We define a test criterion C to identify physically
unrealistic amplification of the load amplitudes, given

b
Y 78 ¢ +1
C‘l — hz‘lmfilm & (21)
T po(20+1) \ Ry

Note that this is simply the product of the projected
surface load and internal load height scaled by the up-
ward continuation of the areoid in equation (16): ILe.,
the dashed gray line in Figure 5 multiplied by the black
line.

4. We assign a scaling factor to map back from the cir-
cle of polar projection to the original N;jy,, iy coeffi-
cients based on whether the test criterion C;;,, exceeds
an empirically defined limit £:

1
Citm < L
-1 S ilm >
Silm - { Cilm%gilm,’ Citm > L } (22)

5. We multiply the solution vector [hSilm,wilm,éﬂm]
by Sﬁ;l to arrive at the final solution.

The projection method described above has three im-
portant features: (1) By projecting the observed coeffi-
cients onto the (h = cos ©; N = 0.1sin ©) circle, near-
singular load amplification is identified independently of
the absolute amplitudes of the areoid and topography.
(2) If the assumed loading depth is near the singular

8

depth, but the observed areoid-topography coefficient
ratio closely approximates the ratio expected for load-
ing at that depth, the test criterion will not exceed the
empirically defined limit. (3) If the test criterion does
exceed the limit for a particular coefficient pair, the
algorithm preserves the ratio of predicted internal to
surface loading &,/ pohflm while the load coefficients
themselves are reduced. The resulting load coefficients
are reduced enough to guarantee convergence of the so-
lution of equations (11), but can still be so large as to
be physically implausible.

We tested the projection approach for a range of
choices of the limit criterion £. L£=1 was found em-
pirically to be the largest choice of £ which guaranteed
convergence of the iterative solution of equations (11)
for all model parameterizations considered in this pa-
per. Consequently, most of the calculations presented
in the remainder of this paper use £ = 1. Example con-
ditions for which the test criterion C can exceed L=1 are
indicated by light gray shading in Figures 4 and 5. The
test criterion for the 400 km load depth in Figure 5a
can exceed the limit for certain areoid-topography ra-
tios when [=2—17. For the 100 km load depth example
shown in Figure 5b, the test criterion never exceeds the
limit. In the case of a 400 km load depth, the range of
© for which C > 1 does not include any of the observed
Martian coefficient ratios when [ = 2 (Figure 4a), but
almost all of the load coefficients would be reduced for
[ = 8 (Figure 4c) and about 10% would be reduced for
I = 16 (Figure 4e). We will compare solutions using
L=1 with convergent solutions using L=o0 (i.e., with
unlimited load amplitudes) in section 5.

2.5. Load integration for the Tharsis region

Much of the controversy surrounding loading pro-
cesses of the Tharsis rise centers on how much of the
topographic expression results from internal loading by
plume buoyancy, and how much from surface loading
by volcanic construction. Hence, once the load mass
fields have been estimated for the planet, we would like
to examine loading localized to the Tharsis region in
particular, as well as the sensitivity of load estimates to
a priori assumptions of lithospheric thickness, depth of
internal loading, and density structure of Mars. Toward
this end, we integrate the stresses applied by internal
and surface loads to estimate a resolved force for Thar-
sis loading.

We modify a method for estimating regionally aver-
aged surface mass from time-variable geoid anomalies
[Swenson and Wahr, 2002] to estimate resolved forces
within the Tharsis region. Error in an estimate of re-
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gionally averaged surface mass density, Gregion, is min-
imized by

1,

region

5region =

i,l,m

Here, Qegion is the area of the region of interest, Y, is
the transfer function that relates surface mass density
coefficients to areoid coefficients, and Wy, are opti-
mized weight coefficients [Swenson and Wahr, 2002]

-1

2 R2
21 5, G (24)

Wa HPETeNCTY

in which B7 is the degree variance of the satellite areoid
measurements, of is the variance of the expected mass
signal, GG; are coefficients of the spatial covariance of
the expected signal, and (;;,,, are coefficients of a region
function ((#, ¢) which has value one inside the region of
interest and zero outside. We modify (23) to estimate a
resolved force, i.e., the integral of stress over the region
as opposed to the average of mass density. Substituting
the appropriate relations, we get

2B p? -t
S tPo . S
Fo = Pog Z |:]- + O'(Q)Glclz(Ql ¥ 1):| (Zlmhzlm (25)

i,l,m

for the resolved force of surface loading, and

" 2B, -t
= S YW a TS ERERY itm&itm (26
F gzal[ +03G10§(2l+1) Gitm&itm  (26)

i,l,m

for the resolved force of internal loading.

To evaluate the relative importance of internal versus
surface loading processes in the topographic signature
of Tharsis, we will express these resolved forces as a
percentage ratio describing the internal loading relative
to total loading via —100F%/(|F%| + |FI|). The ratio
includes a negative sign for the resolved force of internal
loading because we expect predominantly buoyant (i.e.,
negative) internal loading by hot plume material and/or
iron-depleted melt residuum. If the sign of the internal
load is positive (i.e., anomalously dense), the resulting
percentage will be negative.

For calculations presented here, we use the region de-
picted in Figure 1 to generate the coefficients (;;,,,. The
degree variance of satellite measurement uncertainty Bl2
was calculated from individual areoid coefficient uncer-
tainties 0, [Frank Lemoine, personal communication,
2002] via

B =Y D 27
P=> : (27)

i,m
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The statistical properties of mass density, 02 and G,
were approximated from the observed Martian topo-
graphic field h(0, ¢).

2.6. Internal contributions to areoid and
topography

In addition to knowing the relative sizes of surface
and internal loading, it is desirable to define an esti-
mate of the percentage internal and surface load con-
tributions to the observed topography and areoid. The
spatial average of topography H, for example, is

w Cilm
HTharsus z;n QTharsis hzlm~ (28)
We represent the percentage internal load contributions
to topography and areoid as 100HZ/H and 100NZ/N .
Here, because the flexure w in equations (11) is a litho-
spheric response to combined internal and surface load-
ing, we calculate the averages for the internal contri-
butions HZ and A'Z from the internal load coefficients
using
h{zm _ (0103 — ) Ky
Ky — p1 K1(C1 + Cy)

&itm (29)
and

(p1C3 — o) Ky
(C1+Cs) — p1 K

Ni,. = |C3+ e Eitm.- (30)

3. Data Sources

In the following analysis, we use the MGM1004D
areoid and associated errors to spherical harmonic de-
gree 60 [Lemoine et al., 2001] and the IEGDR-L3-V1.0
planetary radius data (0.25 degree resolution) archived
at http://wwwpds.wustl.edu. The areoid solution is
derived from Mars Global Surveyor (MGS) X band
tracking data and Mars Orbital Laser Altimer (MOLA)
crossovers. Uncertainty in the areoid ranges from 1.0 m
at the south pole to 2.6 m near the equator, for harmon-
ics up to [, m=60. In Smith et al. [1999a], a distinction is
made between planetary “shape” (corresponding to the
radius of the planetary surface from the center of mass)
and “topography” (corresponding to the height of the
planetary surface above the areoid). For the analysis
described in section 2, the term “topography” follows
another definition used, e.g., in Turcotte et al. [1981]
and Wieczorek and Phillips [1998], in which h is ref-
erenced to radius R,. The latter definition of topog-
raphy (i.e., the “shape” of Smith et al. [1999a]) is the
usage of the term followed throughout this paper, and
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hence the planetary radius data are used in the fol-
lowing analysis. We subtracted the reference ellipsoid
of the MGM1004D areoid (R,=3397 km and inverse
flattening 1/f = 191.1372 m) from the mean plane-
tary radius field in the IEGDR data set, and we use
the spherical harmonic representation of the resulting
topographic field up to degree and order I, m=60 for
calculations in this paper. To avoid errors associated
with reference frame differences of the topographic and
areoid fields, we ignore the (I=2,m=1) and I<1 terms
in the isostatic analyses presented here. Hydrostatic ef-
fects of Martian rotation in the (I=2,m=0) coefficients
are largely removed by subtraction of the reference ellip-
soid, and so we include those coefficients in the analysis.

4. Results

4.1. Synthetic tests of the method

We tested independently the accuracy of the forward
relations (9) for thin shell flexure, (10) for the areoid,
and the inversion for loads (11) against a propagator-
matrix formulation of viscoelastic response to planetary
loading [Zhong, 1997; Zhong and Zuber, 2000; Zhong,
2002]. We compared results for three loading scenarios,
including a unit load at the surface (h°=1 meter), a
unit load at 80 km depth (£ = p; kg m~2), and a unit
load at 400 km depth. The synthetic model parame-
ters were identical to those given in Table 2, excepting
that both the viscoelastic propagator matrix model and
the thin shell model described in this paper used a litho-
spheric Poisson’s ratio of 0.5 to match the instantaneous
viscous flow modeling assumption of an incompressible
fluid [Hager and Richards, 1989].

The forward model of the areoid used the flexure and
topography output by the viscoelastic propagator ma-
trix model and a linearized relation (i.e., higher order
terms in equation (10) were ignored). The differences
between the two are largest for small [ and deep inter-
nal loads, but nevertheless always less than 1% of the
areoid. The differences reflect only the deformation of
the core/mantle boundary (CMB), which is included in
the viscoelastic model of Zhong and Zuber [2000] but ig-
nored in the thin elastic shell model. The forward model
of surface topography using equation (9) used the areoid
output by the viscoelastic propagator matrix model, so
that we could examine errors introduced by equation
(9) independent of the CMB contribution to the areoid.
Differences between (9) and the viscoelastic propagator
matrix model do not exceed 0.5%. These differences
represent the effects of the thin shell approximation in
(9) plus the instantaneous viscous flow approximation
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Topography /°
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Equivalent Height -
of Internal Load
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Flexure Y

Figure 6. Example solution for (a) surface load h°, (b)
internal load height £/pg, and (c¢) lithospheric flexure w,
assuming the reference model in Table 2 and an internal
load depth of 50 km.

of viscoelastic coupling a; between deep loads and the
surface. Finally, the unit loads input to the viscoelas-
tic propagator matrix model of Zhong and Zuber [2000]
were compared with the loads recovered from solution of
equations (11) using the areoid and topography output
by the viscoelastic model. The combination of errors
that arise from ignoring CMB deformation, thick plate
effects, and the instantaneous viscous flow approxima-
tion of « introduces inaccuracies of at most 5% in the
inverted load estimates.

4.2. Reference loading model

An example solution for Martian planetary loading
is shown in Figure 6. The calculation assumes the refer-
ence density structure and 7,=100 km in Table 2, plus a
50 km depth of internal loading (i.e., at the crust-mantle
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boundary). The estimate of surface load h° (Figure 6a)
is dominated by a significant thickness, average 17.8
km, of topographically constructed material within the
Tharsis region. The internal load height £/py (Figure
6b) is dominated by high-frequency variations, some of
which probably reflect a factor of (R,/R;)"*1 amplifica-
tion by downward continuation of near-surface density
variations to the assumed depth of loading. The average
of the internal load over Tharsis is positively buoyant
but small, equivalent to a height of just 0.5 km. Con-
sequently, the net flexural response of the lithosphere
under Tharsis is downward (averaging 12.7 km over the
region; Figure 6¢). Using the calculations described in
sections 2.5 and 2.6, the internal contribution to litho-
spheric loading of Tharsis is 2.5%, and the internal con-
tributions to topography and the areoid are 6.8% and
—0.5%, respectively.

4.3. Model parameter sensitivity

The model used to invert for Tharsis loading depends
on properties of the Martian lithosphere and density
structure which are only approximately known. A com-
plete analysis of Tharsis loading should include uncer-
tainties, which in this application are dominated by un-
certainties in these model parameters. We have defined
scalar expressions for the averaged contribution of in-
ternal mass anomalies to total lithospheric loading in
section 2.5, and to observed areoid and topography in
section 2.6. In this section, we explore the dependence
of these integral expressions of Tharsis loading on model
parameters, including the range of Tharsis loading that
is feasible given parameter uncertainties.

Parameters which significantly affect the estimates
of internal load contribution include the radius of in-
ternal loading R; and the lithospheric thickness 7.
Internal loading of Tharsis likely reflects three pro-
cesses: (1) thermal variations generated by the single-
plume Martian convective structure [Harder and Chris-
tensen, 1996], (2) mantle chemical variations introduced
by melt depletion [Sleep and Phillips, 1979], and (3)
crustal chemical variations resulting from magmatic in-
trusion [Kiefer, 2003]. The method presented here can-
not distinguish between different types of internal load-
ing, and so all of these are integrated into the final es-
timate of internal load mass anomaly. Consequently,
we consider models for internal loading depths rang-
ing from near the planetary surface to >400 km. Most
convective buoyancy of a single-plume structure in the
Martian mantle would express just below the litho-
sphere, at depths shallower than 400 km [Zhong, 2002].
Small buoyancy contributions from greater depth are
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expected, but equations (11) neglect deformation of the
core-mantle boundary and so are inaccurate for loading
depths much greater than 400 km.

Lithospheric thickness estimates for Mars are highly
variable. McKenzie et al. [2002] report T, estimates in
the range 12—70 km, while Zuber et al. [2000] and Mc-
Govern et al. [2002] tally estimates ranging from 5 to
200 km. Nimmo [2002] estimated T, across the Martian
crustal dichotomy to be ~60 km, and Turcotte et al.
[2002] estimated the global Martian T,=90 km. Gener-
ally, low estimates of T, are derived from impact struc-
tures and the most ancient features, whereas the highest
values tend to derive from young volcanic features, pre-
sumably reflecting planetary cooling with time [Zuber
et al., 2000; McGovern et al., 2002]. Many of the ex-
isting T, estimates for Mars are essentially lower-bound
estimates, for several reasons. For example, loads em-
placed early in the planetary history do not require
further readjustment to maintain isostatic equilibrium
as the lithosphere cools and strengthens [Courtney and
Beaumont, 1983], so the topography and areoid reflect
stresses frozen in at the time of loading. Also, some
estimates [McKenzie et al., 2002; Zuber et al., 2000;
Turcotte et al., 2002] assume surface loading only, re-
sulting in underestimation of the lithospheric strength
if net-buoyant internal loads are present [Forsyth, 1985;
Nimmo, 2002]. We examine T, in the range of 60—200
km in our analysis of Tharsis loading, despite lower es-
timates reported in some investigations.

Figure 7 depicts the percentage contributions of in-
ternal loading to total loading, topography and areoid.
We have included solutions using the load limit criterion
L=1 (black dots) as well as the convergent solutions for
L=00 (gray dots; i.e., with unlimited load amplitudes).
The load estimates exhibit several patterns of depen-
dence on the assumed model parameters. First, one
will note that if T, is about 85 km, the percentage in-
ternal contribution to loading (Figure 7a) is negligible
for all load depths. Larger values of T, require a contri-
bution from buoyant internal loading, and the buoyancy
of loading increases with increasing depth. For exam-
ple, a T, of 120 km would necessitate an 8.4% internal
contribution to the vertical lithospheric load stress, a
20.5% internal contribution to topography and a 4.9%
internal load contribution to the areoid of Tharsis for
a load at 220 km depth. Loading at 420 km would re-
quire internal load contributions of 14.1%, 32.6% and
18.2% to loading, topography and areoid respectively if
T.=120 km. On the other hand, a T.<85 km necessi-
tates internal loading by anomalously dense material,
such that for example a 60 km T, lithosphere loaded
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Figure 7. Percentage contribution by internal load-
ing to (a) integrated lithospheric force, (b) topography,
and (c) areoid of Tharsis, estimated for T,=60 to 200
km and depth of internal loading R, — R;=20 to 420
km. Black circles with solid lines are results using the
load limit algorithm (section 2.4) at near-singular load
depths; gray circles are convergent solutions with un-
limited load coefficients. White star denotes intersec-
tion with models of Figure 8.
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at 220 km depth would require internal load contribu-
tions of -4.9%, -25.7% and -11.0% to lithospheric load-
ing, topography and areoid respectively. The negative
contribution of this anomalously dense mass grows with
increasing depth of the internal load.

Other uncertain parameters in the estimates of Thar-
sis loading include crustal thickness T, and crustal den-
sity po. Sohl and Spohn [1997] postulate two models of
Martian internal structure derived from meteorite sam-
ples of chemical composition, dynamical relations and
equations of state. One model, matching the maximum
estimate of Martian moment of inertia, yields a mean
crustal thickness of 110 km while a second model match-
ing chondritic bulk composition gives 250 km for crustal
thickness. Zuber et al. [2000] estimate a lower-bound
mean thickness of 50 km from the relationship of gravity
to topography, and argue that the Martian crustal di-
chotomy would not be maintained on ~4Ga timescales
if the crust were as thick as 100 km. Nimmo and Steven-
son [2001] also model flow across the crustal dichotomy
using a flow law for dry Columbia diabase, and they esti-
mate the maximum mean crustal thickness to be ~115
km. However, the viscous flow modeling for both of
these upper-bound estimates assumes lower crustal vis-
cosities similar to that of Earth, where silica-rich com-
positions and deep water cycling processes differ signif-
icantly from Martian conditions. Given the pyroxene-
rich Martian crustal composition inferred from Sher-
gottite meteorites [Babeyko et al., 1993] and the de-
pendence of diorite creep strength on pyroxene content
[Mackwell et al., 1998; Bystricky and Mackwell, 2001],
Martian lower-crustal strength may exceed that of dry
olivine. Such extreme lower crustal strength may read-
ily support the Martian crustal dichotomy over signif-
icant timescales. In this analysis, we examine crustal
thicknesses (here defined as thickness of crustal mate-
rial prior to the addition of surface load thickness h)
in the range of 10—160 km. We also examine a range of
crustal densities from 2400 to 3200 kg m~3, encompass-
ing loosely compacted airfall tephras up to the Shergot-
tite crustal composition [Babeyko et al., 1993].

Internal loading contributions for the range of crustal
thickness and density are shown in Figure 8, assum-
ing an internal load depth of 200 km and other pa-
rameters as listed in Table 2. The buoyancy of the
internal load estimate decreases with decreasing crustal
density and with decreasing crustal thickness. If we
expect a relatively thin crust and low density of frac-
tured or weathered near-surface materials, as suggested
by Nimmo [2002], the internal buoyancy may be some-
what less than in the calculations shown in Figure 7. If
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on the other hand the crust is thick and crustal density
nears the Shergottite composition (p ~3100 kg m~3),
as inferred by Sohl and Spohn [1997], internal buoyancy
(and corresponding contributions to areoid and topog-
raphy) could be as much as 10% greater than shown in
Figure 7.

5. Discussion

Until now, most quantitative estimates of Tharsis
loading have assumed a priori that loading was either
predominantly internal [e.g. Kiefer et al., 1996] or pre-
dominantly by surface construction [e.g. Willemann and
Turcotte, 1982]. Investigations which have explicitly in-
corporated both surface and internal loading include
Banerdt and Golombek [2000], which neglects possible
viscous coupling to deep loads, and Zhong and Roberts
[2003], which examined the global expression of [=2—3.
Accurate estimates of dynamic loading contributions re-
quire a model incorporating both the elastic lithosphere
and viscous mantle flow [Zhong, 2002]. The method
described in this paper factors the elastic lithosphere
and viscous flow responses into estimates of the rela-
tive contributions of surface and internal loading pro-
cesses to topographic shape and the geoid. Also, in
contrast to power spectral (e.g., “admittance”) tech-
niques, this analysis retains all of the information con-
tent of the data, including the signs and amplitudes
of individual coefficients. Power spectral averaging to
estimate the geoid/topography ratio or “admittance”,
by squaring and summing the coefficients, destroys the
location-specific information and moreover strips away
much of the coefficient sign information which is crucial
to identify the amplitude and sign of loading (e.g., Fig-
ure 4). By retaining the information content for each
individual coefficient, this method enables analysis of
loading processes localized within a particular region of
the planet.

We have explored loading estimates within the Thar-
sis region for a plausible range of parameters, and we
find that volcanically constructed surface loads com-
prise at least 70% of the lithospheric load acting on
the Tharsis lithosphere, for T,<200 km and internal
load depth <420 km. For the same parameter range,
buoyancy under Tharsis contributes <50% of the topo-
graphic expression, and <25% of the areoid (Figures 7
and 8). Banerdt and Golombek’s [2000] model parame-
terization is virtually identical to that of our reference
model (Table 2) except that they use a mantle den-
sity of 3500 instead of 3400 kg m~3. They similarly
find Tharsis loading to be predominantly surficial, with
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an average ~12 km downward lithospheric deflection
w beneath the Tharsis province as compared to 12.7
km for the reference model in section 4.2. The simi-
larity of results is not surprising, given the assumed 50
km loading depth. Viscous stress coupling neglected
by Banerdt and Golombek [2000] is negligible for loads
within the lithosphere. Our upper-bound (25%) esti-
mate of internal contribution to the Tharsis areoid is
somewhat larger than the 15% upper-bound cited by
Zhong and Roberts [2003], but the two analyses differ in
some respects. Most notably, Zhong and Roberts [2003]
assume cooling of the lithospheric between the times of
Noachian surface loading and modern plume activity,
which reduces the internal contribution to the areoid by
reducing T, at the time of surface loading. Using their
assumed model parameterization with 7,=120 km and
a load depth of 450 km (corresponding to their upper-
bound case), we calculate the internal load contribution
to the areoid to be 16.2%. If we limit calculations to
the spherical harmonic degrees [=2—3 that they consid-
ered, the internal load contribution is 14.8%, virtually
identical to their upper-bound estimate.

5.1. Limitations of the load calculation method

The methodology introduced in this paper, while su-
perior to load estimation from power spectra, provides
only a range of possible solutions corresponding to the
range of uncertainties in model parameters such as the
Martian reference density structure, lithospheric thick-
ness and depth of internal loading. The method also
incorporates several approximations and assumptions,
but these have negligible impact on the results. For ex-
ample, we use a thin shell approximation to lithospheric
strength. Given the thick lithosphere and small plane-
tary radius of Mars, errors in the thin plate approxima-
tion can exceed 10% for 1>20 [Zhong and Zuber, 2000].
However, because of the large areal extent of Tharsis,
contributions from higher degrees are negligible. If we
perform the calculations using only (<10, we get results
identical to those presented in Figures 7 and 8 (using
1<60) to within a few percent.

We have also neglected the effect of deformation at
the core-mantle boundary in the areoid. This approxi-
mation is warranted because we limit the internal load-
ing depths to <420 km, for which CMB contributions
to the areoid are negligible. Also, the assumption that
internal loading occurs at a single fixed radius is one
of many possible parameterizations of internal loading.
Regardless of how we might choose to specify the depth
dependence of loading, a single amplitude parameter
describing the internal mass is dictated by the fact that
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we have only two observables (h and N) at each har-
monic. We will explore other depth-dependent param-
eterizations of buoyancy (e.g., distributions reflecting
convective scaling relations) in subsequent analyses.

The algorithm for limiting load amplitudes when the
deconvolution matrix is nearly singular (section 2.4) is
an important element of the load deconvolution. Lim-
iting the amplitudes at near-singular load depths was
necessitated by inclusion of the finite-amplitude areoid
response to flexure w (equation 10) in the iterative so-
lution of equations (11). If loads are permitted to be
arbitrarily large, w can also be arbitrarily large and
the solution of (11) diverges for some combinations of
model parameters. If the load deconvolution matrix
in equations (11) is nearly singular, but the observed
areoid /topography ratio is very different from that pre-
dicted for the assumed load depth, the physical impli-
cation is that internal loading is probably dominated
by mass anomalies at other depths. Nevertheless, we
want to represent as accurately as possible the mass
distributions predicted for internal loading at a specific
planetary radius. In Figures 7 and 8, the gray circles
denote convergent solutions obtained without specify-
ing a limit criterion on the maximum load amplitudes
(i.e., £L=00). Solutions for those cases which do con-
verge in the absence of a load limit criterion (generally,
for combinations of large T, shallow internal loading,
high crustal density and thick crust) are nearly identical
to those obtained using £=1. For results shown in Fig-
ure 7, the number of coefficients altered by application
of a load limit criterion ranged from 0 for large T, and
shallow loading to ~350 (out of 1889) for deep internal
loading with T,=60 km.

5.2. Implications for 7, estimation

An important corollary of the method presented here
has been noted before [Forsyth, 1985]: Namely, any
arbitrary choice of T, and reference density structure
can exactly reproduce the relationship of gravity to to-
pography, given an appropriate choice of the relative
contributions from surface and internal loading. Con-
sequently, to estimate flexural model parameters such
as T, and density, some assumption or other constraint
of the model solution space is required. In McKenzie
et al. [2002] and Turcotte et al. [2002], for example, the
solution space is limited by the assumption that loading
occurs only at the surface. If, using our methodology,
we adopt T, = 70 km, pp=3000 kg m~3 as McKenzie
et al. [2002] estimate for Tharsis and we adopt their ref-
erence density structure, our estimate of internal load-
ing at Tharsis is < 2% for load depths <250 km. Hence,
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McKenzie et al.’s [2002] 70 km estimate for T, of Tharsis
is dictated by their assumption that there is no internal
loading.

McGovern et al. [2002] incorporate internal loading
via a grid search for the T, and the ratio f of inter-
nal loading to surface loading, assumed constant for
all (¢,{,m), that minimize the difference between ob-
served and predicted admittance functions. They use
an unbiased spectral estimate of the complex admit-
tance, which removes via cancellation most of the effects
of uncorrelated surface and internal loading present in
the data. The modeling assumption of a single constant
load ratio f forces the modeled internal load to correlate
perfectly with the surface load. Hence, by cancelling
uncorrelated load effects and modeling the correlated
load, this approach should yield a better approximation
of the true T, than McKenzie et al.’s [2002] assumption
of no internal loading, unless the correlated load ra-
tio f=0, in which case the two methods are equivalent.
However, two significant limitations remain in this ap-
proach. For one, there is no guarantee that correlated
loading will have constant f-ratio for all (¢,1,m) (on
the contrary, one would expect processes that correlate
surface and internal loads to depend strongly on spatial
wavelength). For the second, McGovern et al. [2002] ex-
plore f only on the interval [0, 1], whereas the potential
range is [—00, 00].

McGovern et al. [2002] do not examine Tharsis as
a whole, but their estimates for small individual fea-
tures of Tharsis range from T,=20—35 km for Highland
Plana up to >150 km for Olympus Mons, with most es-
timates falling in the range 60—100 km. They attribute
the variations to age of the load. Their estimates of
internal loading are zero for most Tharsis features ex-
cepting Alba Patera (f<0.2, corresponding to >17%
internal loading in the resolved force estimation used in
this paper) and the Valles Marineris (f~0.5, or ~33%
internal loading). At the 50 km internal load depth
assumed in McGovern et al. [2002], our estimates of in-
ternal loading for all of Tharsis in Figure 7 range from
f=—-0.04 for T,=60 km up to f=0.13 for T,=200 km.
Our estimates should not directly equate to theirs owing
to differences in the spatial regions examined, their as-
sumption that f is independent of (4,1, m), and ommis-
sion of [<5 (which dominates our loading calculations)
by their spatio-spectral localization technique. Nimmo
[2002] applied a similar fixed-f admittance approach to
line-of-sight gravity data over the Martian crustal di-
chotomy, and estimated 7T, of 61£24 km with a best-fit
=1

All of the estimates of T, described above are de-
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Figure 9. Ratios of areoid/topography coefficients for
the data used in this study. Red circles represent ratios
Ry of coefficients after averaging for given [, and cyan
circles are ratios of the individual coefficients. Solid
lines are the ratios predicted by pure surface loading
using variable T, as indicated and density model param-
eters as in Table 2. The yellow region denotes the pre-
dicted range of all pure surface loading models encom-
passing T,=50—200 km, crustal thickness 7,=10—160
km, pp=2400—3200 kg m~3, and p;=3300—3800 kg
m~3.

rived from the relationship of the areoid (or gravity) to
topography. Because that relationship can be modeled
precisely for any arbitrary T, using equations (11), the
accuracy of T, estimates depends critically on the valid-
ity of the assumed relationship between surface and sub-
surface loading that limits the solution space. The rela-
tionship between internal and surface loading processes
in the Martian areoid and topography can be exam-
ined qualitatively from the ratios of areoid coefficients
divided by topography coefficients in the spherical har-
monic domain. These coefficient ratios differ from the
so-called “geoid-topography ratio” (GTR), in which the
squares of coefficients N2 =~ and h%, = are summed over
i, m before dividing. Squaring removes the sign infor-
mation and hence biases the ratio, so we define an un-
biased, amplitude-weighted average coefficient ratio R,

7 > im S180(Nitm / Ritm )| Nitm|
;=
> im |Pitm]

In Figure 9, R; are quite similar to modeled relations
for purely surface loading. Most (though not all) of
the averaged coefficient ratios fall within a range en-
compassing the pure surface loading models predicted

(31)
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for a plausible range of T, and Martian reference den-
sity structure. However, individual areoid/topography
coeflicient ratios, prior to averaging, can deviate signif-
icantly from the range for pure surface loading. Eighty-
one percent of the individual ratios lie outside the plau-
sible range for surface loading, and fifty-seven percent
remain outside that range at 95% confidence when mea-
surement uncertainties are taken into account. Devia-
tion of ratios from the surface load prediction results
from a combination of (1) coefficient coupling by finite
amplitude effects in the areoid and/or spatially variable
lithospheric thickness T¢, and (2) internal loading of the
lithosphere. We expect that the distribution of coeffi-
cient ratios in Figure 9 is dominated by internal load-
ing. Coincidence of the averaged coefficient ratios with
the surface load model prediction suggests that inter-
nal loading is an approximately zero-mean process for
given [. Such behavior would be expected for randomly
distributed, spatially varying density of the planetary
interior.

Given that any 7. can be made to exactly fit the
areoid and topography data by using equations (11), it
is worth examining the assumptions that restrict the
solution space for various spherical harmonic domain
T. estimation methods. The assumption by McKenzie
et al. [2002] and Turcotte et al. [2002] that there is no
contribution from internal mass anomalies is not con-
sistent with expected scaling of thermal and chemical
variations within planetary interiors, nor does it match
the large variability in ratio of areoid and topography
coefficients for fixed ! (Figure 9). Even a small percent-
age of net contribution from internal mass anomalies
can significantly change the estimate of T, (Figure 7a),
so ignoring internal loads is unlikely to yield an accurate
estimate.

McGovern et al’s [2002] and Nimmo’s [2002] model
assumption that the load ratio f is independent of
(i,1,m) implicitly assumes perfect correlation of the
loads. Figure 9 clearly demonstrates that loads are not
perfectly correlated. For fixed [ and fixed depth of load-
ing, a constant f-ratio of internal to surface loading
would result in all of the individual coefficient ratios
plotting as a single point in Figure 9. However, the
unbiased estimate of admittance used in these papers
should cancel the uncorrelated components of loading
in the “observed” admittance, leaving only that compo-
nent of internal loading which is correlated with surface
loading. When the areoid/topography ratios of global
coefficients are averaged in an unbiased fashion using
equation (31), we find that the relationship is very sim-
ilar to a pure surface loading model (i.e., f=0). The
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small differences between R; and a “best-fit” surface-
loading model parameterization are dependent on wave-
length, however, in a manner that is not necessarily
well-described by a scale-independent parameterization
of a correlated surface load ratio f.

5.3. Resolving the T, ambiguity

A careful description of the ambiguous statistical re-
lationship between surface and internal loading will re-
quire the introduction of additional physical constraints
and/or other observable quantities into the modeling.
Apart from gravity and topography, the most com-
monly cited observable in studies of Tharsis loading are
the associated tectonic structures [Carr, 1974; Wille-
mann and Turcotte, 1982; Harder and Christensen,
1996; Mege and Masson, 1996; Anderson et al., 2001;
Banerdt and Golombek, 2000]. These features reflect
the stress/strain fields at the time of their formation,
so comparing them to the modern-day areoid and to-
pography may require an evolutionary physical model
of Tharsis with substantially more variable parameters
than the model described here [Banerdt et al., 1982].

Alternatively, it may be possible to restrict the T, so-
lution space via careful forward modeling of the loading
processes. If degree-one thermal convection is still ac-
tive, as would seem likely given that Tharsis volcanism
has continued to at least the past 100 Myr [Hartmann
et al., 1999], internal loading of Tharsis would include
significant positive buoyancy. Even if Tharsis single-
plume convection is greatly reduced from what it must
have once been, chemical buoyancy of basalt-depleted
mantle is likely to remain localized within and imme-
diately beneath the Tharsis lithosphere, given the ex-
tremely large volumes of basalt which would be required
to produce the Tharsis surface loading. Consequently,
the Tharsis internal load is much more likely to be net
buoyant than anomalously dense. If we conservatively
assume a high crustal density (pp=3100 kg m~2) and
require that the internal load contribution have a net
buoyant contribution, we find that the minimum pos-
sible planetary T, at the time of Tharsis loading is 50
km. The actual T, can be much larger if the internal
load contribution is large, or the crustal density is low.
A carefully constructed planetary circulation model, in-
corporating melt chemistry relations and matching the
thermal history requirements for timing of Tharsis vol-
canism as well as the final ratios of internal to surface
loading, could narrow further the possible range of Mar-
tian lithospheric thickness.

Until these more complex model spaces can be ex-
plored, the distribution of coefficient ratios (Figure 9)
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suggests that the statistical relationship of Martian sur-
face and internal loading processes might best be de-
scribed as uncorrelated, with some instances of locally
enhanced correlation that depend strongly on spatial
scale. Forsyth [1985] hypothesized that randomization
by surficial processes such as erosion and deposition
should decorrelate surface and internal loads. Hence,
Forsyth's [1985] coherence method limits the solution
space by choosing the T, which minimizes correlation
of the loads. Erosion and deposition are not the only
processes which should decorrelate surface and internal
loads. If we remove the effects of isostatic response,
most physical process aggregates would tend to have a
very different scale dependence for mass redistribution
at the surface than at depth. The broad distribution of
individual coefficient ratios in Figure 9, with approxi-
mately zero-mean relative to the pure surface loading
prediction, is consistent with what one would expect to
observe if surface and internal loading is uncorrelated.
However, some of the averaged coefficient ratios R; (par-
ticularly for 1<10) are slightly different from the surface
load prediction, indicating enhanced correlation of sur-
face and internal loads within wavebands where loading
occurs predominantly by coupled processes of volcanism
and convection or by extremely large (i.e., Hellas-sized)
impacts.

To obtain a preferred estimate of lithospheric thick-
ness and reference density structure of Mars, and hence
of the load structure, we examined which of the model
parameterizations would minimize the correlation of the
surface load estimate h® with the internal load esti-
mate £. The rationale for minimizing the correlation
of surface and internal loads (as opposed to model-
ing the unbiased admittance using a scale-independent
load ratio parameterization) is twofold. One reason is
that an incorrect load model parameterization will al-
ways systematically enhance the apparent correlation
of loads calculated via equations (11) by the introduc-
tion of (for example) false internal loads that offset, and
hence are in phase with, the errors in model estimates
of the surface load. Consequently, correlation statistics
of the loads are more sensitive to the model param-
eterization than are the unbiased estimates of admit-
tance. The second reason is that true correlated loads
are unlikely to occur everywhere on the planet, nor are
they likely to be correlated in a consistent manner at
all wavelengths. Indeed, if correlated loads were scale-
independent and could simulate the scale dependence of
an isostatic model parameter, there would be no advan-
tage to using an admittance estimate because the model
parameter and the load ratio f would be completely
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Figure 10. Coherence of the surface load field h° and
internal load £ as a function of assumed model param-
eters. The contour interval is 0.02, the 65% and 95%
confidence ellipses for the minimum are shown as thick
dotted lines, and the minimum coherence is indicated
by a diamond. (a) Lithospheric thickness T, versus
crustal density pg. (b) Lithospheric thickness T, ver-
sus crustal thickness T,. (c) Lithospheric thickness T
versus mantle density p;. (d) Coherence as a function
of spherical harmonic degree [ for the minimum global
~? defined by T.=110 km, pp=2600 kg m~3, T,.=160
km, and p;=3300 kg m~3.

cross-correlated in any grid-search minimization of the
difference between model and observation. Hence, al-
though loading will be somewhat correlated on certain
spatial scales at some locations, the optimal model pa-
rameterization is in any case likely to be that which
minimizes the global correlation of loads estimated via
equations (11).

In Figure 10, we show the averaged global coherence
~? between surface and internal loads,

2
9 i 60 ‘an:O(hflm + Zhglm)(gllm - Z§2lm)

- 59 l:ZQ ELm(h;Sl’m)Q Zi,m 12lm ’

(32)
for a range of assumed lithospheric thickness T,, crustal
density pg, crustal thickness 7., and mantle density p;.
A grid search over these parameters, assuming other
parameters as given in Table 2 and a 50 km load depth,

gl
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yields a global minimum coherence of the load fields
v2=0.071 when T,=110 km, po=2600 kg m~3, T,=160
km and p;=3300 kg m~3. Note that it is desirable
to assume a shallow load depth for this calculation,
as assuming a deep internal load can dramatically am-
plify (and spuriously correlate) the load coefficients for
assumed load depths approaching the singular depth.
Also shown as thick dotted lines in Figure 10 are the
65% and 95% confidence intervals for the parameters
that yield minimum coherence, estimated via the like-
lihood ratio method [Beck and Arnold, 1977]. The
minimum-coherence parameters of T, and pg are tightly
constrained, but the coherence of estimated loads is so
insensitive to assumed 7. and p; that no value in the
range of the search can be rejected at high confidence.

The coherence as a function of spherical harmonic
degree [ for the model parameterization that minimizes
equation (32) is also shown in Figure 10d. The coher-
ence is non-negligible at [<10 and />50, where averaged
coefficient ratios show evidence of bias downward from
the surface load prediction (Figure 9). Increased coher-
ence of surface and internal loading at the very long
wavelengths may result from the collocation of volcanic
loading and thermal/chemical buoyancy at Tharsis and
Elysium, as well as crustal excavation and mantle up-
warp by the Hellas and Utopia impacts. Increased cor-
relation of surface and internal loads at [>50 may reflect
surface density at the major volcanoes (Olympus, Pavo-
nis, Ascraeus, Arsia, Syrtis Major and Syria Planum)
which dominate the areoid and topographic power at
these wavelengths. These features likely have much
higher density than the 2600 kg m~3 which best rep-
resents the remainder of the Martian topography. The
residual mass of the volcano edifice would be assigned
to subsurface loading by the solution of equations (11)
and then amplified by downward continuation to 50 km
depth.

If we assume the parameters that minimize coher-
ence represent a “best” approximation of the Martian
lithosphere and density structure, we can also calcu-
late a preferred estimate of the internal contribution
to loading of Tharsis. Using the minimum coherence
parameters and an internal load depth of 200 km, we
find that the internal buoyancy contributes 2.1% of the
lithospheric force balance, 4.2% of the topography and
0.7% of the areoid at Tharsis.

6. Conclusions

We have introduced a methodology for inverting in-
ternal and surface loading effects from geoid and topog-
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raphy data. The method incorporates the physics of
both lithospheric stress and viscous coupling to deeper
loads, as well as finite amplitude effects of layer bound-
ary topography on the geoid. Application of the method
to synthetic geoid and topography outputs from a fully
viscoelastic formulation of planetary loading [Zhong and
Zuber, 2000] yields negligible errors of <5% in recovery
of the input loads.

The method was applied to estimate loading of the
Tharsis province on Mars. By far the largest uncertain-
ties in the contribution of internal loading to Tharsis
are introduced by parameter uncertainties in the depth
of internal loading, lithospheric thickness, and reference
density structure of Mars.

Within parameter uncertainties, lithospheric loading
by internal buoyancy beneath Tharsis is less than half of
that by volcanically constructed surface loads. Internal
buoyancy is responsible for <50% of the topographic
expression of Tharsis, and <25% of the areoid (Figures
7 and 8). The upper-bound estimate of internal load
contribution would require deep internal loading ~420
km, a thick lithosphere 7,~200 km, and a high crustal
density near 3000 kg m~3. We cannot rule out a null
contribution from the internal Tharsis load, nor can we
rule out negative contributions from an anomalously
dense load.

Using the methodology developed here, the relation-
ship between geoid and topography can be modeled
exactly using any arbitrarily chosen T. and reference
density structure. Hence, when estimating a “best” T,
and density from gravity and topography, it is neces-
sary to somehow constrain the stochastic relationship
between surface and internal loading. Distributions of
individual areoid/topography coefficient ratios (Figure
9) suggest that the relationship between surface and
internal loads is best (albeit not perfectly) described
as uncorrelated. If that assessment is correct, T, and
density can be estimated by minimizing the global co-
herence of surface and internal load estimates. We find
that coherence is minimized at 95% confidence by a
lithospheric thickness T,=1104+30 km and crustal den-
sity po=2600%150 kg m—3 (Figure 10). Load coherence
is also minimized by crustal thickness 7,=160 km and
mantle density p;=3300 kg m~2, but it is insensitive to
these parameters at 95% confidence.

Using the minimum-coherence parameters and an in-
ternal load depth of 200 km, internal buoyancy con-
tributes 2.1% of the lithospheric force balance, 4.2% of
the topography and 0.7% of the areoid at Tharsis. For
the same parameterization with a load depth of 400
km, internal buoyancy contributes 4.3% of the litho-
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spheric force balance, 8.5% of the topography and 2.2%
of the areoid at Tharsis. Internal load contributions for
other model parameterizations can be determined from
inspection of Figures 7 and 8.
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